Pregled bibliografske jedinice broj: 1093691
Edge Detector-Based Hybrid Artificial Neural Network Models for Urinary Bladder Cancer Diagnosis
Edge Detector-Based Hybrid Artificial Neural Network Models for Urinary Bladder Cancer Diagnosis // Studies in Computational Intelligence "Enabling AI Applications in Data Science" / Hassanien, Aboul-Ella ; N. Taha, Mohamed Hamed ; M. Khalifa, Nour Eldeen (ur.).
Cham: Springer, 2021. str. 225-245 doi:10.1007/978-3-030-52067-0_10
CROSBI ID: 1093691 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Edge Detector-Based Hybrid Artificial Neural
Network Models for Urinary Bladder
Cancer Diagnosis
(Edge Detector-Based Hybrid Artificial Neural
Network Models for Urinary Bladder Cancer
Diagnosis)
Autori
Lorencin, Ivan ; Anđelić, Nikola ; Baressi Šegota, Sandi ; Musulin, Jelena ; Štifanić, Daniel ; Mrzljak, Vedran ; Španjol, Josip ; Car, Zlatan
Vrsta, podvrsta i kategorija rada
Poglavlja u knjigama, znanstveni
Knjiga
Studies in Computational Intelligence "Enabling AI Applications in Data Science"
Urednik/ci
Hassanien, Aboul-Ella ; N. Taha, Mohamed Hamed ; M. Khalifa, Nour Eldeen
Izdavač
Springer
Grad
Cham
Godina
2021
Raspon stranica
225-245
ISBN
978-3-030-52067-0
ISSN
1860-949X
Ključne riječi
Edge Detector ; Artificial Neural Network ; Urinary Bladder Cancer
Sažetak
A standard procedure of ANN utilization in tasks of image recognition and classification includes use of convolutional neural networks (CNN). Such procedure represents a standard approach with applications in various fields of science and technology. Described trend can also be noticed in medical applications. Such approach can be costly from a standpoint of computational resources. For these reasons, the utilization of simpler algorithms can be of significant importance. This feature is particularly emphasized in clinical practice where fewer computing resources are available. Here lies a motive for utilization of hybrid ANN models. In this chapter, an idea of edge detector-based ANN models utilization in diagnosis of urinary bladder cancer is presented.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika, Računarstvo, Temeljne medicinske znanosti, Kliničke medicinske znanosti
POVEZANOST RADA
Projekti:
Ostalo-CEI - 305.6019-20 - Use of regressive artificial intelligence (AI) and machine learning (ML) methods in modelling of COVID-19 spread (COVIDAi) (Car, Zlatan, Ostalo - CEI Extraordinary Call for Proposals 2020) ( CroRIS)
--KK.01.2.2.03.0004 - Centar kompetencija za pametne gradove (CEKOM) (Car, Zlatan; Slavić, Nataša; Vilke, Siniša) ( CroRIS)
NadSve-Sveučilište u Rijeci-uniri-tehnic-18-275-1447 - Razvoj inteligentnog ekspertnog sustava za online diagnostiku raka mokračnog mjehura (Car, Zlatan, NadSve - UNIRI potpore) ( CroRIS)
--KK.01.1.1.01.009 - Napredne metode i tehnologije u znanosti o podatcima i kooperativnim sustavima (DATACROSS) (Šmuc, Tomislav; Lončarić, Sven; Petrović, Ivan; Jokić, Andrej; Palunko, Ivana) ( CroRIS)
KK.01.1.1.01.0009 - Napredne metode i tehnologije u znanosti o podatcima i kooperativnim sustavima (EK )
Ustanove:
Medicinski fakultet, Rijeka,
Tehnički fakultet, Rijeka,
Klinički bolnički centar Rijeka
Profili:
Josip Španjol
(autor)
Vedran Mrzljak
(autor)
Nikola Anđelić
(autor)
Sandi Baressi Šegota
(autor)
Ivan Lorencin
(autor)
Zlatan Car
(autor)
Jelena Musulin
(autor)
Daniel Štifanić
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Scopus