Pregled bibliografske jedinice broj: 1093318
Analysis of a 3D nonlinear, moving boundary problem describing fluid-mesh-shell interaction
Analysis of a 3D nonlinear, moving boundary problem describing fluid-mesh-shell interaction // Transactions of the American mathematical society, 373 (2020), 9; 6621-6681 doi:10.1090/tran/8125 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1093318 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Analysis of a 3D nonlinear, moving boundary
problem describing fluid-mesh-shell interaction
Autori
Čanić, Sunčica ; Galić, Marija ; Muha, Boris
Izvornik
Transactions of the American mathematical society (0002-9947) 373
(2020), 9;
6621-6681
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Fluid-structure interaction ; elastic mesh ; weak solutions ; Navier-Stokes equations
Sažetak
We consider a nonlinear, moving boundary, fluid-structure interaction problem between a time-dependent incompressible, viscous fluid flow, and an elastic structure composed of a cylindrical shell supported by a mesh of elastic rods. The fluid flow is modeled by the time-dependent Navier-Stokes equations in a three-dimensional cylindrical domain, while the lateral wall of the cylinder is modeled by the two-dimensional linearly elastic Koiter shell equations coupled to a one-dimensional system of conservation laws defined on a graph domain, describing a mesh of curved rods. The mesh- supported shell allows displacements in all three spatial directions. Two-way coupling based on kinematic and dynamic coupling conditions is assumed between the fluid and composite structure, and between the mesh of curved rods and Koiter shell. Problems of this type arise in many applications, including blood flow through arteries treated with vascular prostheses called stents. We prove the existence of a weak solution to this nonlinear, moving boundary problem by using the time discretization via a Lie operator splitting method combined with an Arbitrary Lagrangian- Eulerian approach, and a nontrivial extension of the Aubin-Lions-Simon compactness result to problems on moving domains.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
HRZZ-IP-2018-01-3706 - Analiza problema interakcije fluida i strukture i primjene (FSIApp) (Muha, Boris, HRZZ - 2018-01) ( CroRIS)
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus