Pregled bibliografske jedinice broj: 1092652
Benchmarking bio-inspired computation algorithms as wrappers for feature selection
Benchmarking bio-inspired computation algorithms as wrappers for feature selection // Acta Electrotechnica et Informatica, 20 (2020), 2; 35-43 doi:10.15546/aeei-2020-0011 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1092652 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Benchmarking bio-inspired computation algorithms
as wrappers for feature selection
Autori
Bajer, Dražen ; Zorić, Bruno ; Dudjak, Mario ; Martinović, Goran
Izvornik
Acta Electrotechnica et Informatica (1335-8243) 20
(2020), 2;
35-43
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
bio-inspired computation ; classification ; dimensionality reduction ; feature selection ; wrapper model
Sažetak
Reducing the number of features when applying machine learning algorithms may be beneficial not only from the standpoint of computational cost but also of overall quality. Wrapper-based procedures are widely utilised to achieve this. The choice of the wrapper is of utmost importance. Bio-inspired computation algorithms represent a viable choice and are widely adopted. Due to the sheer number of available algorithms, this choice could prove to be somewhat difficult, especially since not all are made equally. The aim of this paper is to explore several optimisers on diverse datasets representing classification problems in order to evaluate their performance and suitability for the task of feature selection.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike, računarstva i informacijskih tehnologija Osijek
Citiraj ovu publikaciju:
Uključenost u ostale bibliografske baze podataka::
- INSPEC
- Celdes
- CNKI Scholar (China National Knowledge Infrastucture)
- CNPIEC
- DOAJ
- EBSCO Discovery Service
- Google Scholar
- io-port.net
- J-Gate
- Naviga (Softweco)
- Primo Central (ExLibris)
- ProQuest
- Summon (Serials Solutions/ProQuest)
- TDOne (TDNet)
- WorldCat (OCLC)