Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1087692

BlackBox: Generalizable reconstruction of extremal values from incomplete spatio-temporal data


Ivek, Tomislav; Vlah, Domagoj
BlackBox: Generalizable reconstruction of extremal values from incomplete spatio-temporal data // Extremes, 24 (2021), 145-162 doi:10.1007/s10687-020-00396-x (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1087692 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
BlackBox: Generalizable reconstruction of extremal values from incomplete spatio-temporal data

Autori
Ivek, Tomislav ; Vlah, Domagoj

Izvornik
Extremes (1386-1999) 24 (2021); 145-162

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Convolutional neural network ; Data reconstruction ; Deep learning ; Extreme Value Analysis Conference challenge ; Ensemble ; Spatio-temporal extremes

Sažetak
We describe our submission to the Extreme Value Analysis 2019 Data Challenge in which teams were asked to predict extremes of sea surface temperature anomaly within spatio-temporal regions of missing data. We present a computational framework which reconstructs missing data using convolutional deep neural networks. Conditioned on incomplete data, we employ autoencoder-like models as multivariate conditional distributions from which possible reconstructions of the complete dataset are sampled using imputed noise. In order to mitigate bias introduced by any one particular model, a prediction ensemble is constructed to create the final distribution of extremal values. Our method does not rely on expert knowledge in order to accurately reproduce dynamic features of a complex oceanographic system with minimal assumptions. The obtained results promise reusability and generalization to other domains.

Izvorni jezik
Engleski

Znanstvena područja
Matematika, Geofizika, Računarstvo



POVEZANOST RADA


Ustanove:
Institut za fiziku, Zagreb,
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Domagoj Vlah (autor)

Avatar Url Tomislav Ivek (autor)

Poveznice na cjeloviti tekst rada:

doi link.springer.com

Citiraj ovu publikaciju:

Ivek, Tomislav; Vlah, Domagoj
BlackBox: Generalizable reconstruction of extremal values from incomplete spatio-temporal data // Extremes, 24 (2021), 145-162 doi:10.1007/s10687-020-00396-x (međunarodna recenzija, članak, znanstveni)
Ivek, T. & Vlah, D. (2021) BlackBox: Generalizable reconstruction of extremal values from incomplete spatio-temporal data. Extremes, 24, 145-162 doi:10.1007/s10687-020-00396-x.
@article{article, author = {Ivek, Tomislav and Vlah, Domagoj}, year = {2021}, pages = {145-162}, DOI = {10.1007/s10687-020-00396-x}, keywords = {Convolutional neural network, Data reconstruction, Deep learning, Extreme Value Analysis Conference challenge, Ensemble, Spatio-temporal extremes}, journal = {Extremes}, doi = {10.1007/s10687-020-00396-x}, volume = {24}, issn = {1386-1999}, title = {BlackBox: Generalizable reconstruction of extremal values from incomplete spatio-temporal data}, keyword = {Convolutional neural network, Data reconstruction, Deep learning, Extreme Value Analysis Conference challenge, Ensemble, Spatio-temporal extremes} }
@article{article, author = {Ivek, Tomislav and Vlah, Domagoj}, year = {2021}, pages = {145-162}, DOI = {10.1007/s10687-020-00396-x}, keywords = {Convolutional neural network, Data reconstruction, Deep learning, Extreme Value Analysis Conference challenge, Ensemble, Spatio-temporal extremes}, journal = {Extremes}, doi = {10.1007/s10687-020-00396-x}, volume = {24}, issn = {1386-1999}, title = {BlackBox: Generalizable reconstruction of extremal values from incomplete spatio-temporal data}, keyword = {Convolutional neural network, Data reconstruction, Deep learning, Extreme Value Analysis Conference challenge, Ensemble, Spatio-temporal extremes} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font