Pregled bibliografske jedinice broj: 1087692
BlackBox: Generalizable reconstruction of extremal values from incomplete spatio-temporal data
BlackBox: Generalizable reconstruction of extremal values from incomplete spatio-temporal data // Extremes, 24 (2021), 145-162 doi:10.1007/s10687-020-00396-x (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1087692 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
BlackBox: Generalizable reconstruction of extremal values from incomplete spatio-temporal data
Autori
Ivek, Tomislav ; Vlah, Domagoj
Izvornik
Extremes (1386-1999) 24
(2021);
145-162
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Convolutional neural network ; Data reconstruction ; Deep learning ; Extreme Value Analysis Conference challenge ; Ensemble ; Spatio-temporal extremes
Sažetak
We describe our submission to the Extreme Value Analysis 2019 Data Challenge in which teams were asked to predict extremes of sea surface temperature anomaly within spatio-temporal regions of missing data. We present a computational framework which reconstructs missing data using convolutional deep neural networks. Conditioned on incomplete data, we employ autoencoder-like models as multivariate conditional distributions from which possible reconstructions of the complete dataset are sampled using imputed noise. In order to mitigate bias introduced by any one particular model, a prediction ensemble is constructed to create the final distribution of extremal values. Our method does not rely on expert knowledge in order to accurately reproduce dynamic features of a complex oceanographic system with minimal assumptions. The obtained results promise reusability and generalization to other domains.
Izvorni jezik
Engleski
Znanstvena područja
Matematika, Geofizika, Računarstvo
POVEZANOST RADA
Ustanove:
Institut za fiziku, Zagreb,
Fakultet elektrotehnike i računarstva, Zagreb
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus