Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1085295

A strategy to incorporate prior knowledge into correlation network cutoff selection


Benedetti, Elisa; Pučić-Baković, Maja; Keser, Toma; Gerstner, Nathalie; Büyüközkan, Mustafa; Štambuk, Tamara; Selman, Maurice H. J.; Rudan, Igor; Polašek, Ozren; Hayward, Caroline et al.
A strategy to incorporate prior knowledge into correlation network cutoff selection // Nature communications, 11 (2020), 1; 5153 (2020), 12 doi:10.1038/s41467-020-18675-3 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1085295 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
A strategy to incorporate prior knowledge into correlation network cutoff selection

Autori
Benedetti, Elisa ; Pučić-Baković, Maja ; Keser, Toma ; Gerstner, Nathalie ; Büyüközkan, Mustafa ; Štambuk, Tamara ; Selman, Maurice H. J. ; Rudan, Igor ; Polašek, Ozren ; Hayward, Caroline ; Al- Amin, Hassen ; Suhre, Karsten ; Kastenmüller, Gabi ; Lauc, Gordan ; Krumsiek, Jan

Izvornik
Nature communications (2041-1723) 11 (2020), 1; 5153 (2020), 12

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Correlation network ; IgG glycomics ; Biochemical pathway ; Metabolomics ; Transcriptomics

Sažetak
Correlation networks are frequently used to statistically extract biological interactions between omics markers. Network edge selection is typically based on the statistical significance of the correlation coefficients. This procedure, however, is not guaranteed to capture biological mechanisms. We here propose an alternative approach for network reconstruction: a cutoff selection algorithm that maximizes the overlap of the inferred network with available prior knowledge. We first evaluate the approach on IgG glycomics data, for which the biochemical pathway is known and well-characterized. Importantly, even in the case of incomplete or incorrect prior knowledge, the optimal network is close to the true optimum. We then demonstrate the generalizability of the approach with applications to untargeted metabolomics and transcriptomics data. For the transcriptomics case, we demonstrate that the optimized network is superior to statistical networks in systematically retrieving interactions that were not included in the biological reference used for optimization.

Izvorni jezik
Engleski

Znanstvena područja
Interdisciplinarne prirodne znanosti, Farmacija, Biotehnologija u biomedicini (prirodno područje, biomedicina i zdravstvo, biotehničko područje)



POVEZANOST RADA


Ustanove:
Farmaceutsko-biokemijski fakultet, Zagreb,
Medicinski fakultet, Split,
Sveučilište u Splitu,
GENOS d.o.o.

Profili:

Avatar Url Maja Pučić Baković (autor)

Avatar Url Gordan Lauc (autor)

Avatar Url Ozren Polašek (autor)

Avatar Url Igor Rudan (autor)

Avatar Url Toma Keser (autor)

Avatar Url Tamara Štambuk (autor)

Poveznice na cjeloviti tekst rada:

doi www.nature.com

Citiraj ovu publikaciju:

Benedetti, Elisa; Pučić-Baković, Maja; Keser, Toma; Gerstner, Nathalie; Büyüközkan, Mustafa; Štambuk, Tamara; Selman, Maurice H. J.; Rudan, Igor; Polašek, Ozren; Hayward, Caroline et al.
A strategy to incorporate prior knowledge into correlation network cutoff selection // Nature communications, 11 (2020), 1; 5153 (2020), 12 doi:10.1038/s41467-020-18675-3 (međunarodna recenzija, članak, znanstveni)
Benedetti, E., Pučić-Baković, M., Keser, T., Gerstner, N., Büyüközkan, M., Štambuk, T., Selman, M., Rudan, I., Polašek, O. & Hayward, C. (2020) A strategy to incorporate prior knowledge into correlation network cutoff selection. Nature communications, 11 (1), 5153 (2020), 12 doi:10.1038/s41467-020-18675-3.
@article{article, author = {Benedetti, Elisa and Pu\v{c}i\'{c}-Bakovi\'{c}, Maja and Keser, Toma and Gerstner, Nathalie and B\"{u}y\"{u}k\"{o}zkan, Mustafa and \v{S}tambuk, Tamara and Selman, Maurice H. J. and Rudan, Igor and Pola\v{s}ek, Ozren and Hayward, Caroline and Al- Amin, Hassen and Suhre, Karsten and Kastenm\"{u}ller, Gabi and Lauc, Gordan and Krumsiek, Jan}, year = {2020}, pages = {12}, DOI = {10.1038/s41467-020-18675-3}, chapter = {5153 (2020)}, keywords = {Correlation network, IgG glycomics, Biochemical pathway, Metabolomics, Transcriptomics}, journal = {Nature communications}, doi = {10.1038/s41467-020-18675-3}, volume = {11}, number = {1}, issn = {2041-1723}, title = {A strategy to incorporate prior knowledge into correlation network cutoff selection}, keyword = {Correlation network, IgG glycomics, Biochemical pathway, Metabolomics, Transcriptomics}, chapternumber = {5153 (2020)} }
@article{article, author = {Benedetti, Elisa and Pu\v{c}i\'{c}-Bakovi\'{c}, Maja and Keser, Toma and Gerstner, Nathalie and B\"{u}y\"{u}k\"{o}zkan, Mustafa and \v{S}tambuk, Tamara and Selman, Maurice H. J. and Rudan, Igor and Pola\v{s}ek, Ozren and Hayward, Caroline and Al- Amin, Hassen and Suhre, Karsten and Kastenm\"{u}ller, Gabi and Lauc, Gordan and Krumsiek, Jan}, year = {2020}, pages = {12}, DOI = {10.1038/s41467-020-18675-3}, chapter = {5153 (2020)}, keywords = {Correlation network, IgG glycomics, Biochemical pathway, Metabolomics, Transcriptomics}, journal = {Nature communications}, doi = {10.1038/s41467-020-18675-3}, volume = {11}, number = {1}, issn = {2041-1723}, title = {A strategy to incorporate prior knowledge into correlation network cutoff selection}, keyword = {Correlation network, IgG glycomics, Biochemical pathway, Metabolomics, Transcriptomics}, chapternumber = {5153 (2020)} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus
  • MEDLINE


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font