Pregled bibliografske jedinice broj: 1084487
Comparison of Machine Learning Methods in Classification of Affective Disorders
Comparison of Machine Learning Methods in Classification of Affective Disorders // Proceedings 43rd International Convention MIPRO 2020 / Skala, Karolj (ur.).
Rijeka: Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO, 2020. str. 193-197 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1084487 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Comparison of Machine Learning Methods in
Classification of Affective Disorders
Autori
Kinder, Ivana ; Friganović, Krešimir ; Vukojević, Jakša ; Mulc, Damir ; Slukan, Tomislav ; Vidović, Domagoj ; Brečić, Petrana ; Cifrek, Mario
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings 43rd International Convention MIPRO 2020
/ Skala, Karolj - Rijeka : Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO, 2020, 193-197
Skup
43nd International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO 2020)
Mjesto i datum
Opatija, Hrvatska, 28.09.2020. - 02.10.2020
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
electroencephalography ; affective disorders ; depression ; feature selection ; binary classification
Sažetak
Depression belongs to a group of psychiatric disorders called affective disorders. In medical practice, patients are diagnosed according to the criteria in standardized diagnostic manuals. The criteria for diagnosing such disorders focus on the symptoms presented by the patient as well as on disqualifying other potential causes of the symptoms. Electroencephalography (EEG) is a non-invasive brain imaging technique that measures the electrical activity of the brain across different sites on the surface of the scalp. In this paper, 15 EEGs of depression patients and 15 EEGs of healthy control subjects are observed. The depressed and healthy subjects are paired according to age and gender to achieve a dataset that is balanced across classes, gender, and age of subjects. 475 different features are extracted from each EEG and used in the evaluation of different binary classification methods. The best F1-score of 0.7586 is achieved with the K-nearest neighbor algorithm. Sequential feature selection is performed, and sequentially selected features are used to evaluate the former binary classification methods. The best F1-score of 0.8750 is achieved with the K-nearest neighbor algorithm. Classification results are compared across different methods, as well as before and after excluding features that were not deemed significant by the sequential selection algorithm.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika, Računarstvo, Kliničke medicinske znanosti
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb,
Klinika za psihijatriju Vrapče
Profili:
Mario Cifrek
(autor)
Petrana Brečić
(autor)
Domagoj Vidović
(autor)
Krešimir Friganović
(autor)
Jakša Vukojević
(autor)
Damir Mulc
(autor)