Pregled bibliografske jedinice broj: 1084087
Fitness Landscape Analysis of Dimensionally-Aware Genetic Programming Featuring Feynman Equations
Fitness Landscape Analysis of Dimensionally-Aware Genetic Programming Featuring Feynman Equations // Lecture Notes in Computer Science
Liblice, Češka Republika, 2020. str. 111-124 doi:10.1007/978-3-030-58115-2_8 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1084087 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Fitness Landscape Analysis of Dimensionally-Aware
Genetic Programming Featuring Feynman Equations
Autori
Đurasević, Marko ; Jakobović, Domagoj ; Scoczynski Ribeiro Martins, Marcella ; Picek, Stjepan ; Wagner, Markus
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Lecture Notes in Computer Science
/ - , 2020, 111-124
Skup
Parallel Problem Solving from Nature – PPSN XVI. PPSN 2020
Mjesto i datum
Liblice, Češka Republika, 05.09.2020. - 09.09.2020
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
genetic programming ; dimensionally-aware GP ; fitness landscape ; local optima network
Sažetak
Genetic programming is an often-used technique for symbolic regression: finding symbolic expressions that match data from an unknown function. To make the symbolic regression more efficient, one can also use dimensionally-aware genetic programming that constrains the physical units of the equation. Nevertheless, there is no formal analysis of how much dimensionality awareness helps in the regression process. In this paper, we conduct a fitness landscape analysis of dimensionally- aware genetic programming search spaces on a subset of equations from Richard Feynman’s well-known lectures. We define an initialisation procedure and an accompanying set of neighbourhood operators for conducting the local search within the physical unit constraints. Our experiments show that the added information about the variable dimensionality can efficiently guide the search algorithm. Still, further analysis of the differences between the dimensionally-aware and standard genetic programming landscapes is needed to help in the design of efficient evolutionary operators to be used in a dimensionally-aware regression.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb