Pregled bibliografske jedinice broj: 1083637
Aluminum microstructure inspection using deep learning: a conventional neural network approach toward secondary dendrite arm spacing determination
Aluminum microstructure inspection using deep learning: a conventional neural network approach toward secondary dendrite arm spacing determination // 4th MY FIRST CONFERENCE - Book of Abstracts / Dugonjić Jovančević, Sanja ; Franulović, Marina ; Vukelić, Goran ; Kirinčić, Mateo ; Liović, David ; Zlatić, Martin (ur.).
Rijeka: Tehnički fakultet Sveučilišta u Rijeci, 2020. str. 26-26 (predavanje, recenziran, sažetak, znanstveni)
CROSBI ID: 1083637 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Aluminum microstructure inspection using deep learning: a conventional neural network approach toward secondary dendrite arm spacing determination
Autori
Nikolić, Filip ; Štajduhar, Ivan ; Čanađija, Marko
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
4th MY FIRST CONFERENCE - Book of Abstracts
/ Dugonjić Jovančević, Sanja ; Franulović, Marina ; Vukelić, Goran ; Kirinčić, Mateo ; Liović, David ; Zlatić, Martin - Rijeka : Tehnički fakultet Sveučilišta u Rijeci, 2020, 26-26
Skup
4th edition of annual conference for doctoral students of engineering and technology „MY FIRST CONFERENCE“
Mjesto i datum
Rijeka, Hrvatska, 24.09.2020
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Recenziran
Ključne riječi
Secondary dendrite arm spacing ; Convolutional neural network ; Casting microstructure inspection ; Deep learning ; Aluminum alloys
Sažetak
The present research investigates the determination of secondary dendrite arm spacing (SDAS) using convolutional neural networks (CNN). The goal is to create a deep learning model for the SDAS prediction with industrially acceptable tolerance. SDAS is predicted from the image taken from the polished sample of EN AC 46000 AlSi9Cu3(Fe) cast aluminum alloy. The Sequential CNN model from the Keras library was trained using Python software. Additionally, image preprocessing methods were used to simplify the training dataset from a full RGB color scale to a black and white color scale. A relatively simple CNN structure could predict different SDAS values on a single cross-section with very high accuracy, an R2score of 99, 2%. However, on an EN AC-42000 AlSi7Mg material cross-section sample which was not used during training, CNN had some lower performances, but still inside the practically acceptable range. Furthermore, a CNN approach towards SDAS determination could be used with industrially acceptable tolerance.
Izvorni jezik
Engleski
Znanstvena područja
Strojarstvo, Temeljne tehničke znanosti