Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1083637

Aluminum microstructure inspection using deep learning: a conventional neural network approach toward secondary dendrite arm spacing determination


Nikolić, Filip; Štajduhar, Ivan; Čanađija, Marko
Aluminum microstructure inspection using deep learning: a conventional neural network approach toward secondary dendrite arm spacing determination // 4th MY FIRST CONFERENCE - Book of Abstracts / Dugonjić Jovančević, Sanja ; Franulović, Marina ; Vukelić, Goran ; Kirinčić, Mateo ; Liović, David ; Zlatić, Martin (ur.).
Rijeka: Tehnički fakultet Sveučilišta u Rijeci, 2020. str. 26-26 (predavanje, recenziran, sažetak, znanstveni)


CROSBI ID: 1083637 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Aluminum microstructure inspection using deep learning: a conventional neural network approach toward secondary dendrite arm spacing determination

Autori
Nikolić, Filip ; Štajduhar, Ivan ; Čanađija, Marko

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni

Izvornik
4th MY FIRST CONFERENCE - Book of Abstracts / Dugonjić Jovančević, Sanja ; Franulović, Marina ; Vukelić, Goran ; Kirinčić, Mateo ; Liović, David ; Zlatić, Martin - Rijeka : Tehnički fakultet Sveučilišta u Rijeci, 2020, 26-26

Skup
4th edition of annual conference for doctoral students of engineering and technology „MY FIRST CONFERENCE“

Mjesto i datum
Rijeka, Hrvatska, 24.09.2020

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Recenziran

Ključne riječi
Secondary dendrite arm spacing ; Convolutional neural network ; Casting microstructure inspection ; Deep learning ; Aluminum alloys

Sažetak
The present research investigates the determination of secondary dendrite arm spacing (SDAS) using convolutional neural networks (CNN). The goal is to create a deep learning model for the SDAS prediction with industrially acceptable tolerance. SDAS is predicted from the image taken from the polished sample of EN AC 46000 AlSi9Cu3(Fe) cast aluminum alloy. The Sequential CNN model from the Keras library was trained using Python software. Additionally, image preprocessing methods were used to simplify the training dataset from a full RGB color scale to a black and white color scale. A relatively simple CNN structure could predict different SDAS values on a single cross-section with very high accuracy, an R2score of 99, 2%. However, on an EN AC-42000 AlSi7Mg material cross-section sample which was not used during training, CNN had some lower performances, but still inside the practically acceptable range. Furthermore, a CNN approach towards SDAS determination could be used with industrially acceptable tolerance.

Izvorni jezik
Engleski

Znanstvena područja
Strojarstvo, Temeljne tehničke znanosti



POVEZANOST RADA


Projekti:
uniri-tehnic-18-37

Ustanove:
Tehnički fakultet, Rijeka

Profili:

Avatar Url Marko Čanađija (autor)

Avatar Url Ivan Štajduhar (autor)


Citiraj ovu publikaciju:

Nikolić, Filip; Štajduhar, Ivan; Čanađija, Marko
Aluminum microstructure inspection using deep learning: a conventional neural network approach toward secondary dendrite arm spacing determination // 4th MY FIRST CONFERENCE - Book of Abstracts / Dugonjić Jovančević, Sanja ; Franulović, Marina ; Vukelić, Goran ; Kirinčić, Mateo ; Liović, David ; Zlatić, Martin (ur.).
Rijeka: Tehnički fakultet Sveučilišta u Rijeci, 2020. str. 26-26 (predavanje, recenziran, sažetak, znanstveni)
Nikolić, F., Štajduhar, I. & Čanađija, M. (2020) Aluminum microstructure inspection using deep learning: a conventional neural network approach toward secondary dendrite arm spacing determination. U: Dugonjić Jovančević, S., Franulović, M., Vukelić, G., Kirinčić, M., Liović, D. & Zlatić, M. (ur.)4th MY FIRST CONFERENCE - Book of Abstracts.
@article{article, author = {Nikoli\'{c}, Filip and \v{S}tajduhar, Ivan and \v{C}ana\djija, Marko}, year = {2020}, pages = {26-26}, keywords = {Secondary dendrite arm spacing, Convolutional neural network, Casting microstructure inspection, Deep learning, Aluminum alloys}, title = {Aluminum microstructure inspection using deep learning: a conventional neural network approach toward secondary dendrite arm spacing determination}, keyword = {Secondary dendrite arm spacing, Convolutional neural network, Casting microstructure inspection, Deep learning, Aluminum alloys}, publisher = {Tehni\v{c}ki fakultet Sveu\v{c}ili\v{s}ta u Rijeci}, publisherplace = {Rijeka, Hrvatska} }
@article{article, author = {Nikoli\'{c}, Filip and \v{S}tajduhar, Ivan and \v{C}ana\djija, Marko}, year = {2020}, pages = {26-26}, keywords = {Secondary dendrite arm spacing, Convolutional neural network, Casting microstructure inspection, Deep learning, Aluminum alloys}, title = {Aluminum microstructure inspection using deep learning: a conventional neural network approach toward secondary dendrite arm spacing determination}, keyword = {Secondary dendrite arm spacing, Convolutional neural network, Casting microstructure inspection, Deep learning, Aluminum alloys}, publisher = {Tehni\v{c}ki fakultet Sveu\v{c}ili\v{s}ta u Rijeci}, publisherplace = {Rijeka, Hrvatska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font