Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1082861

Genetic Algorithm and Artificial Neural Network for Network Forensic Analytics


Oreški, Dijana; Andročec, Darko
Genetic Algorithm and Artificial Neural Network for Network Forensic Analytics // MIPRO 2020, 43 rd International Convention Proceedings / Skala, Karolj (ur.).
Opatija: Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO, 2020. str. 1457-1462 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 1082861 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Genetic Algorithm and Artificial Neural Network for Network Forensic Analytics

Autori
Oreški, Dijana ; Andročec, Darko

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
MIPRO 2020, 43 rd International Convention Proceedings / Skala, Karolj - Opatija : Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO, 2020, 1457-1462

Skup
43rd International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO 2020)

Mjesto i datum
Opatija, Hrvatska, 28.09.2020. - 02.10.2020

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
intrusion detection, machine learning, internet of things, security, neural networks, genetic algorithm.

Sažetak
Rapid development of Internet of things (IoT) technologies and their application and importance within various fields arises security issues. New threats require development of appropriate approaches to address them since information security problems could led to serious damages. This work focuses on developing methods for prediction of undesired behavior. Literature review indicated use of advanced statistical approaches such as logistic regression or multiple regression. However, in the recent years, interest among researchers for applying artificial intelligence techniques is growing. Artificial intelligence approaches shown to be powerful tool for development of efficient predictive models in various fields. Main aim of research presented here is to apply artificial intelligent techniques for intrusion analysis. Our approach is based on the neural networks and genetic algorithms. Neural networks results largely depend on the network parameters which are mostly achieved by trial-anderror. Trial-and- error approach requires a lot of time. Thus, we are applying genetic algorithm to optimize neural networks parameters. Experiments are conducted on the publicly available new dataset, Bot-IoT, consisting of legitimate and simulated IoT network traffic incorporating different types of attacks. Here, we investigate: (i) the level to which available data can be a good basis for predicting intrusion, (ii) efficiency of neural network approach supported by genetic algorithm for developing useful predictive models.

Izvorni jezik
Engleski

Znanstvena područja
Informacijske i komunikacijske znanosti



POVEZANOST RADA


Ustanove:
Fakultet organizacije i informatike, Varaždin

Profili:

Avatar Url Darko Andročec (autor)

Avatar Url Dijana Oreški (autor)

Poveznice na cjeloviti tekst rada:

docs.mipro-proceedings.com

Citiraj ovu publikaciju:

Oreški, Dijana; Andročec, Darko
Genetic Algorithm and Artificial Neural Network for Network Forensic Analytics // MIPRO 2020, 43 rd International Convention Proceedings / Skala, Karolj (ur.).
Opatija: Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO, 2020. str. 1457-1462 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Oreški, D. & Andročec, D. (2020) Genetic Algorithm and Artificial Neural Network for Network Forensic Analytics. U: Skala, K. (ur.)MIPRO 2020, 43 rd International Convention Proceedings.
@article{article, author = {Ore\v{s}ki, Dijana and Andro\v{c}ec, Darko}, editor = {Skala, K.}, year = {2020}, pages = {1457-1462}, keywords = {intrusion detection, machine learning, internet of things, security, neural networks, genetic algorithm.}, title = {Genetic Algorithm and Artificial Neural Network for Network Forensic Analytics}, keyword = {intrusion detection, machine learning, internet of things, security, neural networks, genetic algorithm.}, publisher = {Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO}, publisherplace = {Opatija, Hrvatska} }
@article{article, author = {Ore\v{s}ki, Dijana and Andro\v{c}ec, Darko}, editor = {Skala, K.}, year = {2020}, pages = {1457-1462}, keywords = {intrusion detection, machine learning, internet of things, security, neural networks, genetic algorithm.}, title = {Genetic Algorithm and Artificial Neural Network for Network Forensic Analytics}, keyword = {intrusion detection, machine learning, internet of things, security, neural networks, genetic algorithm.}, publisher = {Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO}, publisherplace = {Opatija, Hrvatska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font