Pregled bibliografske jedinice broj: 1082861
Genetic Algorithm and Artificial Neural Network for Network Forensic Analytics
Genetic Algorithm and Artificial Neural Network for Network Forensic Analytics // MIPRO 2020, 43 rd International Convention Proceedings / Skala, Karolj (ur.).
Opatija: Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO, 2020. str. 1457-1462 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1082861 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Genetic Algorithm and Artificial Neural Network for
Network Forensic Analytics
Autori
Oreški, Dijana ; Andročec, Darko
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
MIPRO 2020, 43 rd International Convention Proceedings
/ Skala, Karolj - Opatija : Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO, 2020, 1457-1462
Skup
43rd International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO 2020)
Mjesto i datum
Opatija, Hrvatska, 28.09.2020. - 02.10.2020
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
intrusion detection, machine learning, internet of things, security, neural networks, genetic algorithm.
Sažetak
Rapid development of Internet of things (IoT) technologies and their application and importance within various fields arises security issues. New threats require development of appropriate approaches to address them since information security problems could led to serious damages. This work focuses on developing methods for prediction of undesired behavior. Literature review indicated use of advanced statistical approaches such as logistic regression or multiple regression. However, in the recent years, interest among researchers for applying artificial intelligence techniques is growing. Artificial intelligence approaches shown to be powerful tool for development of efficient predictive models in various fields. Main aim of research presented here is to apply artificial intelligent techniques for intrusion analysis. Our approach is based on the neural networks and genetic algorithms. Neural networks results largely depend on the network parameters which are mostly achieved by trial-anderror. Trial-and- error approach requires a lot of time. Thus, we are applying genetic algorithm to optimize neural networks parameters. Experiments are conducted on the publicly available new dataset, Bot-IoT, consisting of legitimate and simulated IoT network traffic incorporating different types of attacks. Here, we investigate: (i) the level to which available data can be a good basis for predicting intrusion, (ii) efficiency of neural network approach supported by genetic algorithm for developing useful predictive models.
Izvorni jezik
Engleski
Znanstvena područja
Informacijske i komunikacijske znanosti
POVEZANOST RADA
Ustanove:
Fakultet organizacije i informatike, Varaždin