Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1077454

Deep learning based approach for optic disc and optic cup semantic segmentation for glaucoma analysis in retinal fundus images


Božić-Štulić, Dunja; Braović, Maja; Stipaničev, Darko
Deep learning based approach for optic disc and optic cup semantic segmentation for glaucoma analysis in retinal fundus images // International Journal of Electrical and Computer Engineering Systems, Vol 11 (2020), No 2; 111-120 doi:10.32985/ijeces.11.2.6 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1077454 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Deep learning based approach for optic disc and optic cup semantic segmentation for glaucoma analysis in retinal fundus images

Autori
Božić-Štulić, Dunja ; Braović, Maja ; Stipaničev, Darko

Izvornik
International Journal of Electrical and Computer Engineering Systems (1847-6996) Vol 11 (2020), No 2; 111-120

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
optic disc, optic cup, glaucoma, deep learning.

Sažetak
Optic disc and optic cup are one of the most recognized retinal landmarks, and there are numerous methods for their automatic detection. Segmented optic disc and optic cup are useful in providing the contextual information about the retinal image that can aid in the detection of other retinal features, but it is also useful in the automatic detection and monitoring of glaucoma. This paper proposes a novel deep learning based approach for the automatic optic disc and optic cup semantic segmentation, but also the new model for possible glaucoma detection. The proposed method was trained on DRIVE and DIARETDB1 image datasets and evaluated on MESSIDOR dataset, where it achieved the average accuracy of 97.3% of optic disc and 88.1% of optic cup. Detection rate of glaucoma diesis is 96.75%.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Ustanove:
Fakultet elektrotehnike, strojarstva i brodogradnje, Split

Poveznice na cjeloviti tekst rada:

doi www.etfos.unios.hr

Citiraj ovu publikaciju:

Božić-Štulić, Dunja; Braović, Maja; Stipaničev, Darko
Deep learning based approach for optic disc and optic cup semantic segmentation for glaucoma analysis in retinal fundus images // International Journal of Electrical and Computer Engineering Systems, Vol 11 (2020), No 2; 111-120 doi:10.32985/ijeces.11.2.6 (međunarodna recenzija, članak, znanstveni)
Božić-Štulić, D., Braović, M. & Stipaničev, D. (2020) Deep learning based approach for optic disc and optic cup semantic segmentation for glaucoma analysis in retinal fundus images. International Journal of Electrical and Computer Engineering Systems, Vol 11 (No 2), 111-120 doi:10.32985/ijeces.11.2.6.
@article{article, author = {Bo\v{z}i\'{c}-\v{S}tuli\'{c}, Dunja and Braovi\'{c}, Maja and Stipani\v{c}ev, Darko}, year = {2020}, pages = {111-120}, DOI = {10.32985/ijeces.11.2.6}, keywords = {optic disc, optic cup, glaucoma, deep learning.}, journal = {International Journal of Electrical and Computer Engineering Systems}, doi = {10.32985/ijeces.11.2.6}, volume = {Vol 11}, number = {No 2}, issn = {1847-6996}, title = {Deep learning based approach for optic disc and optic cup semantic segmentation for glaucoma analysis in retinal fundus images}, keyword = {optic disc, optic cup, glaucoma, deep learning.} }
@article{article, author = {Bo\v{z}i\'{c}-\v{S}tuli\'{c}, Dunja and Braovi\'{c}, Maja and Stipani\v{c}ev, Darko}, year = {2020}, pages = {111-120}, DOI = {10.32985/ijeces.11.2.6}, keywords = {optic disc, optic cup, glaucoma, deep learning.}, journal = {International Journal of Electrical and Computer Engineering Systems}, doi = {10.32985/ijeces.11.2.6}, volume = {Vol 11}, number = {No 2}, issn = {1847-6996}, title = {Deep learning based approach for optic disc and optic cup semantic segmentation for glaucoma analysis in retinal fundus images}, keyword = {optic disc, optic cup, glaucoma, deep learning.} }

Časopis indeksira:


  • Web of Science Core Collection (WoSCC)
    • Emerging Sources Citation Index (ESCI)
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font