Pregled bibliografske jedinice broj: 1076292
On the extensibility of some parametric families of D(-1)-pairs to quadruples in the ring Z[\sqrt{;;-t};;], t>0
On the extensibility of some parametric families of D(-1)-pairs to quadruples in the ring Z[\sqrt{;;-t};;], t>0 // 9th International Eurasian Conference on Mathematical Sciences and Applications - Book of Abstract
Skopje, Sjeverna Makedonija, 2020. str. 21-21 (predavanje, recenziran, sažetak, znanstveni)
CROSBI ID: 1076292 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
On the extensibility of some parametric
families of
D(-1)-pairs to quadruples in the ring
Z[\sqrt{;;-t};;], t>0
Autori
Jukić Bokun ; Mirela
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
9th International Eurasian Conference on Mathematical Sciences and Applications - Book of Abstract
/ - , 2020, 21-21
Skup
9th International Eurasian Conference on Mathematical Sciences and Applications
Mjesto i datum
Skopje, Sjeverna Makedonija, 25.08.2020. - 28.08.2020
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Recenziran
Ključne riječi
Diophantine equation, Diophantine m-tuple, Fermat prime
Sažetak
Let R be a commutative ring. A set of m distinct elements in R such that the product of any two distinct elements increased by -1 is a perfect square is called a D(-1)-m-tuple in R. The existence of positive integer solutions of the equation x^2-(p^{; ; ; 2k+2}; ; ; +1)y^2=-p^{; ; ; 2l+1}; ; ; , l \in {; ; ; 0, 1, \dots, k}; ; ; , k \geq 0, (1) where p is a prime, is closely related to the existence of some D(-1)- quadruples in a certain ring. We discuss solubility of equation (1). By combining that result with other known results on the existence of Diophantine quadruples, we are able to prove results on the extensibility of some parametric families of D(-1)-pairs to quadruples in the ring Z[\sqrt{; ; ; -t}; ; ; ], t>0.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Ustanove:
Sveučilište u Osijeku, Odjel za matematiku