Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1072735

Fault Diagnosis of Rotary Machines Using Deep Convolutional Neural Network with Wide Three Axis Vibration Signal Input


Kolar, Davor; Lisjak, Dragutin; Pajak, Michal; Pavković, Danijel
Fault Diagnosis of Rotary Machines Using Deep Convolutional Neural Network with Wide Three Axis Vibration Signal Input // Sensors, 20 (2020), 14; 4017, 13 doi:10.3390/s20144017 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1072735 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Fault Diagnosis of Rotary Machines Using Deep Convolutional Neural Network with Wide Three Axis Vibration Signal Input

Autori
Kolar, Davor ; Lisjak, Dragutin ; Pajak, Michal ; Pavković, Danijel

Izvornik
Sensors (1424-8220) 20 (2020), 14; 4017, 13

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
maintenance ; rotary machinery ; fault diagnosis ; convolutional neural network ; classification

Sažetak
Fault diagnosis is considered as an essential task in rotary machinery as possibility of an early detection and diagnosis of the faulty condition can save both time and money. This work presents developed and novel technique for deep- learning-based data-driven fault diagnosis for rotary machinery. The proposed technique input raw three axes accelerometer signal as high definition 1D image into deep learning layers which automatically extract signal features, enabling high classification accuracy. Unlike the researches carried out by other researchers, accelerometer data matrix with dimensions 6400 × 1 × 3 is used as input for convolutional neural network training. Since convolutional neural networks can recognize patterns across input matrix, it is expected that wide input matrix containing vibration data should yield good classification performance. Using convolutional neural networks (CNN) trained model, classification in one of the four classes can be performed. Additionally, number of kernels of CNN is optimized using grid search, as preliminary studies show that alternating number of kernels impacts classification results. This study accomplished the effective classification of different rotary machinery states using convolutional artificial neural network for classification of raw three axis accelerometer signal input.

Izvorni jezik
Engleski

Znanstvena područja
Strojarstvo



POVEZANOST RADA


Ustanove:
Fakultet strojarstva i brodogradnje, Zagreb

Profili:

Avatar Url Danijel Pavković (autor)

Avatar Url Dragutin Lisjak (autor)

Avatar Url Davor Kolar (autor)

Poveznice na cjeloviti tekst rada:

doi www.mdpi.com doi.org

Citiraj ovu publikaciju:

Kolar, Davor; Lisjak, Dragutin; Pajak, Michal; Pavković, Danijel
Fault Diagnosis of Rotary Machines Using Deep Convolutional Neural Network with Wide Three Axis Vibration Signal Input // Sensors, 20 (2020), 14; 4017, 13 doi:10.3390/s20144017 (međunarodna recenzija, članak, znanstveni)
Kolar, D., Lisjak, D., Pajak, M. & Pavković, D. (2020) Fault Diagnosis of Rotary Machines Using Deep Convolutional Neural Network with Wide Three Axis Vibration Signal Input. Sensors, 20 (14), 4017, 13 doi:10.3390/s20144017.
@article{article, author = {Kolar, Davor and Lisjak, Dragutin and Pajak, Michal and Pavkovi\'{c}, Danijel}, year = {2020}, pages = {13}, DOI = {10.3390/s20144017}, chapter = {4017}, keywords = {maintenance, rotary machinery, fault diagnosis, convolutional neural network, classification}, journal = {Sensors}, doi = {10.3390/s20144017}, volume = {20}, number = {14}, issn = {1424-8220}, title = {Fault Diagnosis of Rotary Machines Using Deep Convolutional Neural Network with Wide Three Axis Vibration Signal Input}, keyword = {maintenance, rotary machinery, fault diagnosis, convolutional neural network, classification}, chapternumber = {4017} }
@article{article, author = {Kolar, Davor and Lisjak, Dragutin and Pajak, Michal and Pavkovi\'{c}, Danijel}, year = {2020}, pages = {13}, DOI = {10.3390/s20144017}, chapter = {4017}, keywords = {maintenance, rotary machinery, fault diagnosis, convolutional neural network, classification}, journal = {Sensors}, doi = {10.3390/s20144017}, volume = {20}, number = {14}, issn = {1424-8220}, title = {Fault Diagnosis of Rotary Machines Using Deep Convolutional Neural Network with Wide Three Axis Vibration Signal Input}, keyword = {maintenance, rotary machinery, fault diagnosis, convolutional neural network, classification}, chapternumber = {4017} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus
  • MEDLINE


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font