Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1072347

Systematic evaluation of normalization methods for glycomics data based on performance of network inference


Benedetti, Elisa; Gerstner, Nathalie; Pučić- Baković, Maja; Keser, Toma; Reiding, Karli R.; Ruhaak, L. Renee; Štambuk, Tamara; Selman, Maurice H.J.; Rudan, Igor; Polašek, Ozren et al.
Systematic evaluation of normalization methods for glycomics data based on performance of network inference // Metabolites, 10 (2020), 7; 271, 17 doi:10.3390/metabo10070271 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1072347 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Systematic evaluation of normalization methods for glycomics data based on performance of network inference

Autori
Benedetti, Elisa ; Gerstner, Nathalie ; Pučić- Baković, Maja ; Keser, Toma ; Reiding, Karli R. ; Ruhaak, L. Renee ; Štambuk, Tamara ; Selman, Maurice H.J. ; Rudan, Igor ; Polašek, Ozren ; Hayward, Caroline ; Beekman, Marian ; Slagboom, Eline ; Wuhrer, Manfred ; Dunlop, Malcolm G. ; Lauc, Gordan ; Krumsiek, Jan

Izvornik
Metabolites (2218-1989) 10 (2020), 7; 271, 17

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
glycomics ; data normalization ; gaussian graphical models

Sažetak
Glycomics measurements, like all other high- throughput technologies, are subject to technical variation due to fluctuations in the experimental conditions. The removal of this non-biological signal from the data is referred to as normalization. Contrary to other omics data types, a systematic evaluation of normalization options for glycomics data has not been published so far. In this paper, we assess the quality of different normalization strategies for glycomics data with an innovative approach. It has been shown previously that Gaussian Graphical Models (GGMs) inferred from glycomics data are able to identify enzymatic steps in the glycan synthesis pathways in a data-driven fashion. Based on this finding, here, we quantify the quality of a given normalization method according to how well a GGM inferred from the respective normalized data reconstructs known synthesis reactions in the glycosylation pathway. The method therefore exploits a biological measure of goodness. We analyzed 23 different normalization combinations applied to six large-scale glycomics cohorts across three experimental platforms: Liquid Chromatography- ElectroSpray Ionization-Mass Spectrometry (LC- ESI-MS), Ultra High Performance Liquid Chromatography with Fluorescence Detection (UHPLC-FLD), and Matrix Assisted Laser Desorption Ionization-Furier Transform Ion Cyclotron Resonance-Mass Spectrometry (MALDI- FTICR-MS). Based on our results, we recommend normalizing glycan data using the ‘Probabilistic Quotient’ method followed by log-transformation, irrespective of the measurement platform. This recommendation is further supported by an additional analysis, where we ranked normalization methods based on their statistical associations with age, a factor known to associate with glycomics measurements.

Izvorni jezik
Engleski

Znanstvena područja
Farmacija, Biotehnologija u biomedicini (prirodno područje, biomedicina i zdravstvo, biotehničko područje)



POVEZANOST RADA


Ustanove:
Farmaceutsko-biokemijski fakultet, Zagreb,
Medicinski fakultet, Split,
GENOS d.o.o.

Profili:

Avatar Url Maja Pučić Baković (autor)

Avatar Url Gordan Lauc (autor)

Avatar Url Ozren Polašek (autor)

Avatar Url Igor Rudan (autor)

Avatar Url Toma Keser (autor)

Avatar Url Tamara Štambuk (autor)

Poveznice na cjeloviti tekst rada:

doi www.mdpi.com

Citiraj ovu publikaciju:

Benedetti, Elisa; Gerstner, Nathalie; Pučić- Baković, Maja; Keser, Toma; Reiding, Karli R.; Ruhaak, L. Renee; Štambuk, Tamara; Selman, Maurice H.J.; Rudan, Igor; Polašek, Ozren et al.
Systematic evaluation of normalization methods for glycomics data based on performance of network inference // Metabolites, 10 (2020), 7; 271, 17 doi:10.3390/metabo10070271 (međunarodna recenzija, članak, znanstveni)
Benedetti, E., Gerstner, N., Pučić- Baković, M., Keser, T., Reiding, K., Ruhaak, L., Štambuk, T., Selman, M., Rudan, I. & Polašek, O. (2020) Systematic evaluation of normalization methods for glycomics data based on performance of network inference. Metabolites, 10 (7), 271, 17 doi:10.3390/metabo10070271.
@article{article, author = {Benedetti, Elisa and Gerstner, Nathalie and Pu\v{c}i\'{c}- Bakovi\'{c}, Maja and Keser, Toma and Reiding, Karli R. and Ruhaak, L. Renee and \v{S}tambuk, Tamara and Selman, Maurice H.J. and Rudan, Igor and Pola\v{s}ek, Ozren and Hayward, Caroline and Beekman, Marian and Slagboom, Eline and Wuhrer, Manfred and Dunlop, Malcolm G. and Lauc, Gordan and Krumsiek, Jan}, year = {2020}, pages = {17}, DOI = {10.3390/metabo10070271}, chapter = {271}, keywords = {glycomics, data normalization, gaussian graphical models}, journal = {Metabolites}, doi = {10.3390/metabo10070271}, volume = {10}, number = {7}, issn = {2218-1989}, title = {Systematic evaluation of normalization methods for glycomics data based on performance of network inference}, keyword = {glycomics, data normalization, gaussian graphical models}, chapternumber = {271} }
@article{article, author = {Benedetti, Elisa and Gerstner, Nathalie and Pu\v{c}i\'{c}- Bakovi\'{c}, Maja and Keser, Toma and Reiding, Karli R. and Ruhaak, L. Renee and \v{S}tambuk, Tamara and Selman, Maurice H.J. and Rudan, Igor and Pola\v{s}ek, Ozren and Hayward, Caroline and Beekman, Marian and Slagboom, Eline and Wuhrer, Manfred and Dunlop, Malcolm G. and Lauc, Gordan and Krumsiek, Jan}, year = {2020}, pages = {17}, DOI = {10.3390/metabo10070271}, chapter = {271}, keywords = {glycomics, data normalization, gaussian graphical models}, journal = {Metabolites}, doi = {10.3390/metabo10070271}, volume = {10}, number = {7}, issn = {2218-1989}, title = {Systematic evaluation of normalization methods for glycomics data based on performance of network inference}, keyword = {glycomics, data normalization, gaussian graphical models}, chapternumber = {271} }

Časopis indeksira:


  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
    • Emerging Sources Citation Index (ESCI)
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font