Pregled bibliografske jedinice broj: 1072296
Machine Learning Methods for EEG Signal Classification in Affective Disorders
Machine Learning Methods for EEG Signal Classification in Affective Disorders, 2020., diplomski rad, preddiplomski, Fakultet elektrotehnike i računarstva, Zagreb
CROSBI ID: 1072296 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Machine Learning Methods for EEG Signal Classification in Affective Disorders
Autori
Skorupan, Ivan
Vrsta, podvrsta i kategorija rada
Ocjenski radovi, diplomski rad, preddiplomski
Fakultet
Fakultet elektrotehnike i računarstva
Mjesto
Zagreb
Datum
30.06
Godina
2020
Stranica
58
Mentor
Cifrek, Mario
Neposredni voditelj
Friganović, Krešimir
Ključne riječi
EEG ; electroencephalography ; machine learning ; imbalanced dataset ; affective disorder ; support vector machine ; k-nearest neighbors algorithm ; AdaBoost
Sažetak
Imbalanced datasets are often found in medical praxis. Classical machine learning algorithms suffer from overfitting on imbalanced datasets, which is why special methods are needed to improve model performance. In this thesis, EEG signal features classification by medical diagnoses was performed on several tables using the support vector machine, k-nearest neighbors, random forest and AdaBoost models. Classification results were analyzed and it was shown that the AdaBoost and linear kernel support vector machine models show the most potential in majority of the examples.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo, Interdisciplinarne tehničke znanosti
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb