Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1069145

Predictive and generative machine learning models for photonic crystals


Christensen, Thomas; Loh, Charlotte; Picek, Stjepan; Jakobović, Domagoj; Jing, Li; Fisher, Sophie; Ceperic, Vladimir; Joannopoulos, John; Soljačić, Marin
Predictive and generative machine learning models for photonic crystals // Nanophotonics, 9 (2020), 13; 4183-4192 doi:10.1515/nanoph-2020-0197 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1069145 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Predictive and generative machine learning models for photonic crystals

Autori
Christensen, Thomas ; Loh, Charlotte ; Picek, Stjepan ; Jakobović, Domagoj ; Jing, Li ; Fisher, Sophie ; Ceperic, Vladimir ; Joannopoulos, John ; Soljačić, Marin

Izvornik
Nanophotonics (2192-8606) 9 (2020), 13; 4183-4192

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
photonic crystals ; machine learning ; generative models

Sažetak
The prediction and design of photonic features have traditionally been guided by theory-driven computational methods, spanning a wide range of direct solvers and optimization techniques. Motivated by enormous advances in the field of machine learning, there has recently been a growing interest in developing complementary data-driven methods for photonics. Here, we demonstrate several predictive and generative data-driven approaches for the characterization and inverse design of photonic crystals. Concretely, we built a data set of 20, 000 two- dimensional photonic crystal unit cells and their associated band structures, enabling the training of supervised learning models. Using these data set, we demonstrate a high-accuracy convolutional neural network for band structure prediction, with orders-of-magnitude speedup compared to conventional theory-driven solvers. Separately, we demonstrate an approach to high- throughput inverse design of photonic crystals via generative adversarial networks, with the design goal of substantial transverse-magnetic band gaps. Our work highlights photonic crystals as a natural application domain and test bed for the development of data-driven tools in photonics and the natural sciences.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika, Računarstvo



POVEZANOST RADA


Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Poveznice na cjeloviti tekst rada:

doi www.degruyter.com doi.org

Citiraj ovu publikaciju:

Christensen, Thomas; Loh, Charlotte; Picek, Stjepan; Jakobović, Domagoj; Jing, Li; Fisher, Sophie; Ceperic, Vladimir; Joannopoulos, John; Soljačić, Marin
Predictive and generative machine learning models for photonic crystals // Nanophotonics, 9 (2020), 13; 4183-4192 doi:10.1515/nanoph-2020-0197 (međunarodna recenzija, članak, znanstveni)
Christensen, T., Loh, C., Picek, S., Jakobović, D., Jing, L., Fisher, S., Ceperic, V., Joannopoulos, J. & Soljačić, M. (2020) Predictive and generative machine learning models for photonic crystals. Nanophotonics, 9 (13), 4183-4192 doi:10.1515/nanoph-2020-0197.
@article{article, author = {Christensen, Thomas and Loh, Charlotte and Picek, Stjepan and Jakobovi\'{c}, Domagoj and Jing, Li and Fisher, Sophie and Ceperic, Vladimir and Joannopoulos, John and Solja\v{c}i\'{c}, Marin}, year = {2020}, pages = {4183-4192}, DOI = {10.1515/nanoph-2020-0197}, keywords = {photonic crystals, machine learning, generative models}, journal = {Nanophotonics}, doi = {10.1515/nanoph-2020-0197}, volume = {9}, number = {13}, issn = {2192-8606}, title = {Predictive and generative machine learning models for photonic crystals}, keyword = {photonic crystals, machine learning, generative models} }
@article{article, author = {Christensen, Thomas and Loh, Charlotte and Picek, Stjepan and Jakobovi\'{c}, Domagoj and Jing, Li and Fisher, Sophie and Ceperic, Vladimir and Joannopoulos, John and Solja\v{c}i\'{c}, Marin}, year = {2020}, pages = {4183-4192}, DOI = {10.1515/nanoph-2020-0197}, keywords = {photonic crystals, machine learning, generative models}, journal = {Nanophotonics}, doi = {10.1515/nanoph-2020-0197}, volume = {9}, number = {13}, issn = {2192-8606}, title = {Predictive and generative machine learning models for photonic crystals}, keyword = {photonic crystals, machine learning, generative models} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font