Pregled bibliografske jedinice broj: 106910
Hierarchic generation of the solutions of non-linear problems
Hierarchic generation of the solutions of non-linear problems // Book of Abstracts European Congress on Computational Methods in Applied Sciences and Engineering / Onate, Eugenio ; Bugeda, G. ; Suárez, B. (ur.).
Barcelona: International Center for Numerical Methods in Engineering (CIMNE), 2000. str. 283-283 (predavanje, međunarodna recenzija, sažetak, znanstveni)
CROSBI ID: 106910 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Hierarchic generation of the solutions of non-linear problems
Autori
Kozulić, Vedrana ; Gotovac, Blaž
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
Book of Abstracts European Congress on Computational Methods in Applied Sciences and Engineering
/ Onate, Eugenio ; Bugeda, G. ; Suárez, B. - Barcelona : International Center for Numerical Methods in Engineering (CIMNE), 2000, 283-283
ISBN
84-89925-69-0
Skup
European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2000)
Mjesto i datum
Barcelona, Španjolska, 11.09.2000. - 14.09.2000
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Numerical modeling; Basis functions; Universality; Fragment; Collocation method; Plastic failure.
Sažetak
This paper presents a new approach to the numerical modeling of non-linear engineering problems. Here, instead of a traditionally discretisation of the considered area into finite elements, the solution of arbitrary accuracy is attained by hierarchic increase of the number of basis functions on the area. The basis functions which are implementated in presented numerical models belong the class of finite functions with infinite differentiability named after they authors Rvachev's basis functions or, in short, Rbf. The presented numerical models use the collocation method considering a unique criterion for the selection of collocation points. The criterion of plastification is tested in the same points for which the values of solution function are calculated i.e. in collocation points. Described numerical procedure is illustrated on examples of elasto-plastic bending of a beam and elasto-plastic behavior of a prismatic bar subjected to torsion. Hierarchic increase in number of basis functions in the model provides a simple way to increase the accuracy of an approximate solution in places where plastic yielding occurs and also accelerates the convergence of incremental-iterative procedure. This method provides excellent results for the elaborated problems and numerical procedure is stable until plastic failure occurs.
Izvorni jezik
Engleski
Znanstvena područja
Građevinarstvo