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Coronavirus (COVID-19) is a highly infectious disease that has captured the attention of the worldwide public. Modeling of such
diseases can be extremely important in the prediction of their impact. While classic, statistical, modeling can provide satisfactory
models, it can also fail to comprehend the intricacies contained within the data. In this paper, authors use a publicly available
dataset, containing information on infected, recovered, and deceased patients in 406 locations over 51 days (22nd January 2020
to 12th March 2020). This dataset, intended to be a time-series dataset, is transformed into a regression dataset and used in
training a multilayer perceptron (MLP) artificial neural network (ANN). The aim of training is to achieve a worldwide model of
the maximal number of patients across all locations in each time unit. Hyperparameters of the MLP are varied using a grid
search algorithm, with a total of 5376 hyperparameter combinations. Using those combinations, a total of 48384 ANNs are
trained (16128 for each patient group—deceased, recovered, and infected), and each model is evaluated using the coefficient of
determination (R2). Cross-validation is performed using K-fold algorithm with 5-folds. Best models achieved consists of 4
hidden layers with 4 neurons in each of those layers, and use a ReLU activation function, with R2 scores of 0.98599 for
confirmed, 0.99429 for deceased, and 0.97941 for recovered patient models. When cross-validation is performed, these scores
drop to 0.94 for confirmed, 0.781 for recovered, and 0.986 for deceased patient models, showing high robustness of the deceased

patient model, good robustness for confirmed, and low robustness for recovered patient model.

1. Introduction

Coronavirus disease, code-named COVID-19, is an infec-
tious disease caused by a virus, a member of the Betacorona-
virus family named severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), previously referred to as 2019
novel coronavirus (2019-nCoV) [1, 2]. It is thought that the
virus outbreak has animal origins, and it was first transmitted
to humans in Wuhan province China, in November/Decem-
ber 2019 [3-5].

At present, no approved vaccines or specific antivirals are
available for COVID-19 [6, 7]. Previous SARS pandemic in
2002 and 2003 was controlled and finally stopped by conven-
tional control measures, including travel restrictions and
patient isolation. Currently, these measures are applied in
almost all countries with the COVID-19 outbreak; however,
their effectiveness depends on how rigorous they are [8, 9].
It follows that the methods enabling reliable prediction of

spreading of COVID-19 would be of great benefit in persuad-
ing public opinion why it is crucial to adhere to these mea-
sures in the past decade [10, 11].

Modeling viral diseases such as COVID-19 is extremely
important in determining their possible future impact.
Modeling the spread and the effect of such a disease can be
supremely important in understanding its impact [12]. While
traditional, statistical, modeling can offer precise models
[13], artificial intelligence (AI) techniques could be the key
to finding high-quality predictive models [14]. In this paper,
the authors present a machine learning solution, a multilayer
perceptron (MLP) artificial neural network (ANN) [15], to
model the spread of the disease, which predicts the maximal
number of people who contracted the disease per location in
each time unit, maximal number of people who recovered
per location in each time unit, and maximal number of
deaths per location in each time unit. MLP has been selected
for its simplicity in comparison to other AI algorithms, due
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F1GURE 1: The process of AI modeling is shown. First, the data is collected and placed into a dataset. Part of that data is used for training and
testing the various MLP hyperparameter combinations, in an attempt to find the best possible architecture. The most successful model can

then be used to determine the future instances.

to authors wishing to test the possibility of modeling using
comparatively simple methods, due to shorter training time
associated with such methods, because the quick generation
of results is important when modeling diseases, due to the
as-fast-as-possible requirement for models with good enough
regression performance. Modeling can be done on existing
data, using statistical analyses. But, when it comes to
extremely complex models, statistical analysis can fail to
comprehend the intricacies contained in the analyzed data
[16]. More complex algorithms, namely, Al algorithms and
especially machine learning algorithms can be used to “learn”
not just the general trend, but the intricacies of the data,
which results in higher quality models produced [10]. Al
algorithms have become increasingly applicable in various
branches of science and industry, i.e., medicine [17] for the
classification of various diseases as well as creating regression
models for estimation and prediction. Models obtained by
machine learning techniques adjust their parameters to fit
their predictions to existing data, no matter what it contains.
By doing this, the models take into account interinfluences of
various input parameters that might not have been taken into
consideration if traditional modeling methods were used
[11]. This ability to take into account hard to observe intrica-
cies stored inside data should lend itself well, when used in an
attempt of regressing a complex model such as spread of
COVID-19. Currently, existing models of COVID-19 spread
have relatively poor results [18] or have made predictions
which were proven to not correlate to real data [19, 20].

In the research presented, the aim was to achieve an accu-
rate regression model through the utilization of an AT algo-
rithm using the data that existed during the time in which
this research was performed. This was done in order to dem-
onstrate the possibility of using Al algorithms in early model-
ing of infective disease, such as COVID-19, spread. The aim
of the model is to observe all the collected data together,
instead of separating it into localities, as that mode of obser-
vation could allow a machine learning method to achieve a
better global model of viral spread. MLP algorithm is trained
using a “Novel Coronavirus (COVID-19) Cases” [21], by
John Hopkins CSSE. At the time of this research being per-

formed, the dataset contained 20706 data points and was split
into the training (75%—15530 data points) and testing
(25%—5176 data points) sets. The hyperparameters of the
MLP are determined using a grid search algorithm. The
robustness of the different models is tested using K-fold
cross-validation algorithm. Achieved results are then evalu-
ated using the R2 metric. A detailed look upon the techniques
used has been given in Materials and Methods.

2. Materials and Methods

Materials and methods used in the research are presented in
this section. The process from using and transforming the
available data, modeling it using MLP with a multitude of
hyperparameter combinations, and the final evaluation of
results is described. The overview of the modeling process
is given in Figure 1.

2.1. Dataset Description. Dataset used in this research is
obtained from a publicly available repository operated by
the Johns Hopkins University Center for Systems Science
and Engineering (JHU CSSE) and supported by ESRI Living
Atlas Team and the Johns Hopkins University Applied Phys-
ics Lab (JHU APL) [21]. It contains the data for the corona-
virus patients which describe the number of patients in a
certain location (defined by the name of location, latitude,
and longitude), for each day since the start of the COVID-
19 infections (22"¢ of January 2020) until 12" of March
2020. Dataset is split into three groups—infected, recovered,
and deceased. At the time of this research being performed,
the dataset contained the data for 406 locations and 51 days.
The geographical distribution of data contained in the data-
set is given in Figure 2, which shows the geographical distri-
bution of infected patients at various points in time.
Dataset, as published, is organized as time-series data—-
showing the spread of disease in various locations over time.
The data collected at the time of this research being per-
formed was insufficient to attempt a time-series Al modeling.
To train the MLP, the dataset is rearranged to create a set of
inputs and outputs. For each number of cases, the latitude
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F1GURE 2: Overview of geographical distributions for number of patients infected with COVID-19 at 15" of February 2020 (a), 1st of March

2020 (b), and 12" of March 2020 (c).

and longitude of the location, as well as the date of data col-
lection is added. The date is converted into the number of
days since the first entry into the dataset. In this way, each
data point contains information about the number of
patients (contracted, recovered, or dead) at a given location,
at a given day since the first noted case. Latitude, longitude,
and the number of days since the first case are used as input
data, with the output data being the number of patients in
each group. In this manner, the time-series dataset is rear-
ranged in a manner that makes it appropriate to train a
regressive MLP.

Finally, the dataset, consisting of a total of 20706 data
points, is randomly split into five equal parts, or so-called
folds. Each of these parts is used as a testing set, with the
remaining parts used as a training set. This means that train-
ing for each architecture is repeated 5 times, with an
80%/20% (16565 randomly selected data points for training
and 4141 data points for testing set) training-testing
distribution.

2.2. Multilayer Perceptron. Multilayer perceptron (MLP) is a
type of a fully connected, feed-forward artificial neural



network (ANN), consisting of neurons arranged in layers
[11]. At least three layers make up MLP: an input layer, an
output layer, and one or more hidden layers. The output
layer consists of a single neuron, the value of which is the out-
put of the MLP ANN—in the presented research this is the
predicted number of patients. The input layer consists of
the neurons in the same number as the dataset inputs [22].
MLPs used in this research will as such have 3 neurons in
the input layer—one for each of the input data points (lati-
tude, longitude, days since infection).

The reason for selecting MLP as the method used in this
research was the ease of implementation of such methods.
MLP is also known to provide high-quality models, while
keeping the training time relatively low compared to more
complex methods.

MLP is based on calculating the values of neurons in a
current layer as the activated summation of weighted outputs
of neurons in a previous layer, connected to the neuron [22,
23]. Activation refers to the sums of weighted inputs being
used as inputs to the so-called activation function, which
maps the input to the output either directly (identity activa-
tion), within certain limits (sigmoid, or tanh), or maps it
while removing unwanted values (e.g., ReLU which removes
negative values, and maps positive ones directly) [24]. The
weights of the neuron connections are initially random, but
then adjusted through the backward propagation process,
in which the error for a forward propagated of the MLP
results gets back-propagated through, and weights are
adjusted proportionally to the error [25].

Due to the fact that MLP regressor can only regress a sin-
gle value, if the problem consists of multiple output values, a
modular model consisting of multiple models must be used.
While similarities are possible between models; training the
models completely separately means that all the architectures
will be tested, giving a higher chance to finding a better pre-
diction model for each goal. In the research presented, three
separate MLPs are trained—one for each of the goals—in-
fected, recovered, and deceased patients.

To confirm the validity of the results, the cross-validation
process has been performed. The cross-validation method
used in this research is the K-Fold algorithm [22, 26]. During
this process, the dataset is split into k subsets (in presented
case k =5). Then, each of them is used as a testing set, while
the remaining k — 1 subsets are used as a training dataset
[27]. The result is then presented as the average of achieved
scores, with standard deviation noted.

The solution has been implemented using Python 3.8
programming language, using scikit-learn library [28].
Scikit-learn has been selected due to ease of use, as well as
the fact that it contains the implementation of most of the
methods used in this research [29]. ActiveState ActivePython
implementation of Python and needed libraries has been
used [30]. Training has been performed using a high-
performance computer (HPC)—Bura Supercomputer. To
train the models 16 HPC nodes, each containing 48 logical
CPUs (24 physical cores on Intel Xeon E5), with 64 GB of
RAM per each node [31]—resulting in total of 768 logical
CPUs used. The operating system used is Red Hat Enterprise
Linux, with kernel version 3.10.0-957.
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2.3. Hyperparameter Determination. Hyperparameters are
values which define the architecture of the ANN model. Cor-
rect values of hyperparameters are crucial in achieving a
quality model. To determine the best hyperparameter combi-
nation, the grid search algorithm has been used.

The grid search algorithm takes a set of possible parame-
ters for each of the adjusted hyperparameters. Then, each
possible combination of hyperparameters is determined
[32]. Each of the combinations is used to train the MLP. To
avoid the possibility of poor solutions due to the initial ran-
dom setting of the weights, each set of hyperparameters is
used for training three times. Each of the achieved models
is then evaluated. The hyperparameters adjusted in per-
formed research are [28, 29]:

(i) solver—the algorithm used for recalculating the
weights of the MLP during back propagation process
in training

(ii) initial learning rate a—value of learning rate at the
beginning of training

(iii) adjustment of learning rate—the way the learning
rate will change during the training, and if it will
be adjusted depending on the current value of cost
function or not

(iv) number of hidden layers and neurons—defined as
tuple, in which each integer defines a single hidden
layer and the integer value defines the number of
neurons in that layer

(v) activation function—function used to transform the
input values of the neuron to the output value of the
neuron, and

(vi) regularization parameter L2—parameter which
limits the influence of input parameters, to avoid
the ANN being trained with a bias towards a single
input value which has a high correlation to the out-
put; larger the parameter, more is the influence
lowered

Possible hyperparameter values are given in Table 1.

2.4. Model Quality Estimation. Every obtained model is eval-
uated using the coefficient of determination (R2). The coef-
ficient of determination defines how well is the variance
which exists in the real data explained with the predicted
data. The real output data, the actual number of patients,
is contained in the vector y, while the predicted data,
obtained from the trained model, is set into the vector "y.
With that, the coeflicient of determination R2 can be deter-
mined as the coefficient between the residual variance and
total variance [33]:

RP=1-— SRESIDUAL _

D 175 N
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STOTAL

with m being the number of evaluated samples (length of
vectors y and "y). R2 is defined in the range R2¢ [0,1], with
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TaBLE 1: Hyperparameters used in training. First column lists the hyperparameter name, while the possible values of the hyperparameter are
listed in the second column. The last column presents the number of hyperparameters, with the last row showing the total number of

hyperparameter combinations, obtained and used during the grid search algorithm execution.

Hyperparameter Possible values Count
Solver Adam, LBFGS 2
Initial learning rate 0.00001, 0.01, 0.1, 0.5 4
Learning rate adjustment Constant, adaptive, invscaling 3
(3), (6), (4, 4), (3, 3, 3), (6, 6, 6), (4, 3,4),
Hidden layer sizes (12, 12, 12), (4, 4, 3, 3), (4, 4, 4, 4), (6, 6, 6, 6), (10, 5, 5, 10), 14
(3,3,3,3,3), (10, 10, 10, 10, 10), (12, 12, 6, 6, 3, 3)
Activation functions ReLU, identity, logistic, tanh 4
Regularization parameter 0.00001, 0.001, 0.01, 0.1 4
Total number of hyperparameter combinations 5376

TaBLE 2: Hyperparameters of MLPs for best models achieved. Each column is one of the models—predicting the number of infected,
recovered, and deceased patients. Hyperparameters that resulted in the best model are shown in rows.

Hyperparameter Infected model Recovered model Deceased model
Solver LBFGS LBFGS LBFGS
Initial learning rate 0.1 0.5 0.01
Learning rate adjustment Constant Constant Adaptive
Hidden layer tuple (4, 4, 4, 4) (4, 4,4, 4) (4, 4, 4, 4)
Activation function ReLU ReLU ReLU

L2 regularization parameter 0.0001 0.001 0.01

the value of 0.0 meaning that none of the variances in real
data is explained in the predicted data, and the value of 1.0
being the best possible value, meaning all of the variances
is explained in the predicted data.

Due to cross-validation being used, each architecture is
trained 5 times—on differing data. To present the results
of cross-validation, the average of R2 scores is calculated

(R*=1/5%7 ,R?). To show the variance between the scores
on different folds, the standard deviation of the R2 scores

is also presented (0 =1/Y>_ (R* - R*)/5).

3. Results and Discussion

In this section, the detailed descriptions of the achieved
results are presented. These results were achieved using the
methodology described in the previous section. After the pre-
sentation of the results, the results are discussed.

3.1. Results. Best models achieved show a high-quality regres-
sion, with R2 scores of 0.98599 for the confirmed patient
model, 0.97941 for the recovered patient model, and
0.99429 for the deceased patient model.

The best models achieved for all three goals (number of
infections, recoveries, and deaths) have a same basic ANN
architecture. These architectures consist of four hidden
layers, and 16 total hidden neurons distributed equally
among layers—4 neurons each.

Best models for all three outputs also use the ReLU acti-
vation function and the LBFGS solver. The best model for
confirmed cases has a constant learning rate of 0.1 and has

a regularization parameter of 0.0001. For the recovered cases,
MLP uses a constant learning rate of 0.5 and a regularization
parameter of 0.001. The model for predicting the number of
deceased patients uses the adaptive learning rate of 0.01, with
the regularization parameter set at 0.1. The hyperparameters
of the best models are listed in Table 2.

Figure 3 shows the comparison of real data to data
obtained from the model. Real data, sorted by days, as
well as trends for all three modeled cases, are shown
in subfigures. Subfigures (a), (c), and (e) demonstrate
the comparison of real data, sorted by date for various
locations and the data predicted by model. Each bar pre-
sents a number of patients in a given group, per loca-
tion. For easier viewing, the maximum of each daily
count is plotted as the envelope of the plotted data in
(b), (d), and (f). These envelopes show an approximation
of maximal disease spread per patient group, for both
real data and modeled data, which shows that the mod-
eled data follows the collected data closely. Table 3
shows the cross-validation results achieved for the best
models shown in Table 2.

Training time, using 5-fold cross-validation, on the
system used and described in the “Materials and Methods”
section is shown in Table 4. Taking into account 5376
training items, and training repeated 5 times due to
cross-validation, for a total of 26880 models trained, this
means that the average model training time is 0.088
minutes or 5.26 seconds.

3.2. Discussion. Results show that a similar architecture can
be used for all three models, suggesting a similar trend
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F1GuRre 3: Comparison of real and modeled data. Comparison of the number of cases for each input into the dataset are shown for infected (a),
deceased (c), and recovered (e) patients, while the trend of the data and model through the days analyzed are shown for the infected (b),
deceased (d), and recovered (f) patients.

TaBLE 3: The results of k-fold cross-validation, (k=5). Average TaBLE 4: Training times in minutes for each goal, using 5-fold cross-

scores for each goal and the standard deviation are shown. validation and grid search of 5376 items. Training time measured
using 16 48-thread HPC nodes. Average training time across all
Goal Average R? score across folds o goals is shown in the bottom.
Confirmed 0.94 0.037 — -
Goal Training time (min)
Recovered 0.781 0.072 ro—! 128
Deceased 0.986 0.021 onme
Recovered 2436
Deceased 2209
between all three goals. The use of the ReLU activation func- Average 2357.67

tion is not unexpected, as it eliminates the negative values, it
is logical it is going to lend itself well to a model which pre-
dicts only positive values. Learning rates differ between
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models, both the models for infected and recovered use a rel-
atively high constant learning rate, while the deceased
model uses a significantly lower learning rate but adapts
over iterations. The regularization parameter is relatively
low for the model of infections but raises for the recovered
and deceased models—pointing to the fact that there is a
higher influence of certain input parameters on the output
of those models which needed to be suppressed.

Models show poor tracking of sudden and unexpected
changes, such as the sudden jump in infections around day
22. Still, the model demonstrates good tracking of overall
model change, giving good predictions even after such unex-
pected leaps—if given time to adjust. Due to the largest num-
ber of cases being located in China, the model is largely fitted
to that data. Future changes in the maximum number of
infected, deceased, or recovered patients should be included
in the model to further test its robustness.

Cross-validation performed shown across the solution
space shows a drop in R2 scores. The model for deceased
patients shows the lowest drop in scoring used. The model
of confirmed cases shows a more significant drop from
0.986 to 0.94, but these results are still acceptable. The highest
drop is shown in the model of recovered patients where R2
score drops from 0.97941 to 0.781, showing the low robust-
ness of the model for recovered patients. The architectures
of the models that show the best results remain the same
when cross-validation is applied.

The aim of this research, which was to generate a model
of coronavirus disease spread on a global level using machine
learning methods, was achieved. The created models show a
high fidelity to existing data, with the exception of the model
for recovered patients. In comparison to already designed
models, presented models show a higher accuracy, as well
as tracking of deaths and recoveries. Additionally, the pre-
sented model is created using a simpler Al algorithm and
uses a comparatively simple architecture, which has perfor-
mance benefits in terms of computational time and resources
[22]. Results demonstrate a clear ability to mathematically
model a spread of an infective disease using Al on a relatively
limited dataset, meaning that comparatively long periods of
data collection are not strictly necessary to achieve a good
model with AI algorithms. Obtained results point towards
the ability to use such algorithms to model similar phenom-
ena in the future.

4. Conclusion

The achieved models show that it is possible to acquire a
quality model of novel viral infections using AI methods,
with geographical and time data as inputs. In this research,
high accuracy models have been achieved for all regression
goals. Achieved results prove the fact that AT models can be
used in modeling problems such as the spread and effect of
infectious diseases. This means that the application of Al
methods should be attempted in modeling the present and
future spread of infective diseases, in an attempt to predict
the impact of such infections on humankind. Model fitting
to largely the Chinese patient population shows that using
the number of patients per country is not necessarily a good

metric to use as a training goal—further research should be
invested in testing how different types of metrics (e.g., per-
centage of disease in population) affect model quality. The
code and models achieved can be found at a public reposi-
tory, made available by the authors [34]. Authors are also
planning on the implementation of achieved models inside
an easy to use and widely accessible web-interface.

Future work should apply other methods in an attempt to
find even better models or models that are simpler to use, or
more transparent than ones observed with MLP. Compari-
son of models for different infective diseases would be inter-
esting. More data being acquired should enable the use of
other techniques such as recurrent neural networks to be
applied on the analyses of infection models using time-
series data.

Data Availability

This research uses a publicly available dataset “2019 Novel
Coronavirus Data Repository” published by Johns Hopkins
University Center for Systems Science and Engineering (JHU
CSSE) available at: https://github.com/CSSEGISandData/
COVID-19. Models achieved, and the code used in their gen-
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