Pregled bibliografske jedinice broj: 1063756
Frigate Speed Estimation Using CODLAG Propulsion System Parameters and Multilayer Perceptron Procjena brzine fregate pomoću parametara CODLAG pogonskog sustava i višeslojnog perceptrona
Frigate Speed Estimation Using CODLAG Propulsion System Parameters and Multilayer Perceptron Procjena brzine fregate pomoću parametara CODLAG pogonskog sustava i višeslojnog perceptrona // Naše more : znanstveni časopis za more i pomorstvo, 67 (2020), 2; 117-125 doi:10.17818/NM/2020/2.4 (međunarodna recenzija, prethodno priopćenje, ostalo)
CROSBI ID: 1063756 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Frigate Speed Estimation Using CODLAG
Propulsion
System Parameters and Multilayer Perceptron
Procjena brzine fregate pomoću parametara
CODLAG
pogonskog sustava i višeslojnog perceptrona
(Frigate Speed Estimation Using CODLAG Propulsion
System Parameters and Multilayer Perceptron)
Autori
Sandi Baressi Šegota, Ivan Lorencin, Jelena Musulin, Daniel Štifanić, Zlatan Car
Izvornik
Naše more : znanstveni časopis za more i pomorstvo (0469-6255) 67
(2020), 2;
117-125
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, prethodno priopćenje, ostalo
Ključne riječi
artificial intelligence ; artificial neural networks ; CODLAG propulsion system ; multilayer perceptron ; speed estimation
Sažetak
Authors present a Multilayer Perceptron (MLP) artifi cial neural network (ANN) method for the purpose of estimating a speed of a frigate using a combined diesel-electric and gas (CODLAG) propulsion system. Dataset used is publicly available, as conditionbased maintenance of naval propulsion plants dataset, out of which GT Compressor decay state coeffi cient and GT Turbine decay state coeffi cient are unused, while 15 features are used as input and ship speed is used as dataset output. Data set consists of 11934 data points out of which 8950 (75%) are used as a training set and 2984 (25%) are used as a testing set. 26880 MLPs, with 8960 diff erent parameter combinations are trained using a grid search algorithm, quality of each solution being estimated with coeffi cient of determination (R2) and mean absolute error (MAE). Results show that a high-quality estimation can be made using an MLP, with best result having an error of just 3.4485x10-5 knots (absolute error of 0.00014% of the range). This result was achieved with a MLP with three hidden layers containing 100 neurons each, logistic activation function, LBFGS solver, constant learning rate of 0.1 and no L2 regularization.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika, Računarstvo, Strojarstvo
POVEZANOST RADA
Projekti:
Ostalo-CEI - 305.6019-20 - Use of regressive artificial intelligence (AI) and machine learning (ML) methods in modelling of COVID-19 spread (COVIDAi) (Car, Zlatan, Ostalo - CEI Extraordinary Call for Proposals 2020) ( CroRIS)
--KK.01.2.2.03.0004 - Centar kompetencija za pametne gradove (CEKOM) (Car, Zlatan; Slavić, Nataša; Vilke, Siniša) ( CroRIS)
NadSve-Sveučilište u Rijeci-uniri-tehnic-18-275-1447 - Razvoj inteligentnog ekspertnog sustava za online diagnostiku raka mokračnog mjehura (Car, Zlatan, NadSve - UNIRI potpore) ( CroRIS)
InoUstZnVO-CIII-HR-0108-10 - Concurrent Product and Technology Development - Teaching, Research and Implementation of Joint Programs Oriented in Production and Industrial Engineering (Car, Zlatan, InoUstZnVO - CEEPUS) ( CroRIS)
--KK.01.1.1.01.009 - Napredne metode i tehnologije u znanosti o podatcima i kooperativnim sustavima (DATACROSS) (Šmuc, Tomislav; Lončarić, Sven; Petrović, Ivan; Jokić, Andrej; Palunko, Ivana) ( CroRIS)
CIII-HR-0108
KK.01.2.2.03.0004
uniri-tehnic-18-275-1447
KK.01.1.1.01.0009 - Napredne metode i tehnologije u znanosti o podatcima i kooperativnim sustavima (EK )
Ustanove:
Tehnički fakultet, Rijeka
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Emerging Sources Citation Index (ESCI)
- Scopus