Pregled bibliografske jedinice broj: 1062317
DBSCAN-like clustering method for various data densities
DBSCAN-like clustering method for various data densities // Pattern analysis and applications, 23 (2020), 541-554 doi:10.1007/s10044-019-00809-z (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1062317 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
DBSCAN-like clustering method for various data
densities
Autori
Scitovski, Rudolf ; Sabo, Kristian
Izvornik
Pattern analysis and applications (1433-7541) 23
(2020);
541-554
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Clustering, DBSCAN, Incremental algorithm, Various data densities, Clusters merging, Least Squares distance-like function
Sažetak
In this paper, we propose a modification of the well-known DBSCAN algorithm, which recognizes clusters with various data densities in a given set of data points $A = {; ; a^i in R^n : i = 1, ldots , m}; ; $. First, we define the parameter $MinPts = floor ln |A| floor$ and after that, by using a standard procedure from DBSCAN algorithm, for each $a in A$ we determine radius $epsilon_a$ of the circle containing $MinPts$ elements from the set $A$. We group the set of all these radii into the most appropriate number $(t)$ of clusters by using Least Square distance-like function applying {; ; tt SymDIRECT}; ; or {; ; tt SepDIRECT}; ; algorithm. In that way we obtain parameters $epsilon_1 > · · · > epsilon_t$. Furthermore, for parameters ${; ; MinPts, epsilon_1}; ; we construct a partition starting with one cluster and then add new clusters for as long as the isolated groups of at least $MinPts$ data points in some circle with radius $epsilon_1$ exist. We follow a similar procedure for other parameters $epsilon_2, ldots, , epsilon_t$. After the implementation of the algorithm, a larger number of clusters appear than can be expected in the optimal partition. Along with defined criteria, some of them are merged by applying a merging process for which a detailed algorithm has been written. Compared to the standard DBSCAN algorithm, we show an obvious advantage for the case of data with various densities.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
HRZZ-IP-2016-06-6545 - Optimizacijski i statistički modeli i metode prepoznavanja svojstava skupova podataka izmjerenih s pogreškama (OSMoMeSIP) (OSMoMeSIP) (Scitovski, Rudolf, HRZZ ) ( CroRIS)
Ustanove:
Sveučilište u Osijeku, Odjel za matematiku
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus