Pregled bibliografske jedinice broj: 1058499
A Novel Understanding of Phocidae Hearing Adaptations Through a Study of Northern Elephant Seal ( Mirounga angustirostris ) Ear Anatomy and Histology
A Novel Understanding of Phocidae Hearing Adaptations Through a Study of Northern Elephant Seal ( Mirounga angustirostris ) Ear Anatomy and Histology // Anatomical record-advances in integrative anatomy and evolutionary biology, 302 (2019), 9; 1605-1614 doi:10.1002/ar.24026 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1058499 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
A Novel Understanding of Phocidae Hearing
Adaptations Through a Study of Northern
Elephant Seal ( Mirounga angustirostris ) Ear
Anatomy and Histology
Autori
Smodlaka, Hrvoje ; Khamas, Wael A. ; Jungers, Hali ; Pan, Roman ; Al‐Tikriti, Mohammed ; Borovac, Josip Anđelo ; Palmer, Lauren ; Bukac, Martina
Izvornik
Anatomical record-advances in integrative anatomy and evolutionary biology (1932-8486) 302
(2019), 9;
1605-1614
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
acoustic impedance ; acoustic impedance matching ; ear ; seal
Sažetak
The most conspicuous aural adaptation in northern elephant seals (NES) is complete absence of an auricle and a tortuous collapsed external acoustic meatus. The NES epitympanic recess contains massive ossicles immersed in the middle ear cavernous sinuses. Engorgement of the cavernous sinuses would make ossicles fully buoyant during deep diving. NES have a comparatively larger cochlear nerve, which carries a significantly larger number of axons than in terrestrial mammals, which would give them auditory ability similar to the obligate marine mammals such as cetaceans. Our calculations show that the traditional "air- dependent" impedance matching mechanism in NES functions to just half of the capacity compared with the one described in terrestrial mammals. Impedance matching would be further hindered in NES while diving due to fully collapsed external acoustic meatus. Thanks to similarities of acoustic impedance between the sea water, soft tissues, and blood sinuses, very little sound energy would be reflected and lost. When sound is generated underwater, the large ossicles, buoyant in the cavernous sinus, would not move due to oscillation of tympanic membrane. Rather, they would be oscillating due to their inertia and process of acoustic streaming. Our mathematical simulation shows that an increase in sound frequency would cause increased displacement of the stapedial footplate and thus transmit the sound energy to the inner ear. We contend that during diving, impedance matching and sound signal amplification in the middle ear courses through the cavernous sinuses and oscillates the enlarged ossicles, thus enabling a high- frequency ultrasonic hearing range in Phocidae. Anat Rec, 302:1605-1614, 2019.
Izvorni jezik
Engleski
Znanstvena područja
Veterinarska medicina
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
- MEDLINE