Pregled bibliografske jedinice broj: 1057779
Analysis of City Bus Driving Cycle Features for the Purpose of Multidimensional Driving Cycle Synthesis
Analysis of City Bus Driving Cycle Features for the Purpose of Multidimensional Driving Cycle Synthesis // SAE Technical Paper #2020-01-1288
Detroit (MI): SAE INTERNATIONAL, 2020. str. 1-8 doi:10.4271/2020-01-1288 (ostalo, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1057779 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Analysis of City Bus Driving Cycle Features for
the Purpose of Multidimensional Driving Cycle
Synthesis
Autori
Topić, Jakov ; Škugor, Branimir ; Deur, Joško
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
SAE Technical Paper #2020-01-1288
/ - Detroit (MI) : SAE INTERNATIONAL, 2020, 1-8
Skup
WCX SAE World Congress Experience
Mjesto i datum
Detroit (MI), Sjedinjene Američke Države, 14.10.2020
Vrsta sudjelovanja
Ostalo
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
City bus ; Transport ; Analysis ; Multidimensional ; Driving cycle ; Synthesis
Sažetak
Driving cycles are typically used for estimation of vehicle fuel/energy consumption and CO2 emissions. In most of applications only the vehicle velocity vs. time profile is considered as a driving cycle, while a road slope is typically omitted. Since the road slope significantly impacts the fuel consumption, it should be included into realistic driving cycles for hilly roads. As a part of wider research of multidimensional driving cycle synthesis, this paper focuses on analysis of a broad city bus driving cycle dataset recorded in the city of Dubrovnik. The analysis is aimed at revealing the impact of road slope on velocity and acceleration distributions, and clustering the recorded data into several groups reflecting various driving and traffic congestion characteristics. Finally, the Markov chain method is employed to synthesize 3D driving cycles for the selected data clusters, where the Markov chain states include vehicle velocity, vehicle acceleration, and road slope. The synthesized cycles are validated to ensure their representativeness in terms of faithful description of main features of the recorded driving cycles.
Izvorni jezik
Engleski
Znanstvena područja
Tehnologija prometa i transport, Temeljne tehničke znanosti, Informacijske i komunikacijske znanosti
POVEZANOST RADA
Projekti:
HRZZ-IP-2018-01-8323 - Adaptivno i prediktivno upravljanje utičnim hibridnim električnim vozilima (ACHIEVE) (Deur, Joško, HRZZ - 2018-01) ( CroRIS)
Ustanove:
Fakultet strojarstva i brodogradnje, Zagreb