Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1057716

Semantic Component Association within Object Classes Based on Convex Polyhedrons


Đurović, Petra; Vidović, Ivan; Cupec, Robert
Semantic Component Association within Object Classes Based on Convex Polyhedrons // Applied Sciences-Basel, 10 (2020), 8; 2641, 20 doi:10.3390/app10082641 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1057716 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Semantic Component Association within Object Classes Based on Convex Polyhedrons

Autori
Đurović, Petra ; Vidović, Ivan ; Cupec, Robert

Izvornik
Applied Sciences-Basel (2076-3417) 10 (2020), 8; 2641, 20

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
component association ; semantic segmentation ; part recognition

Sažetak
Most objects are composed of semantically distinctive parts that are more or less geometrically distinctive as well. Points on the object relevant for a certain robot operation are usually determined by various physical properties of the object, such as its dimensions or weight distribution, and by the purpose of object parts. A robot operation defined for a particular part of a representative object can be transferred and adapted to other instances of the same object class by detecting the corresponding components. In this paper, a method for semantic association of the object’s components within the object class is proposed. It is suitable for real-time robotic tasks and requires only a few previously annotated representative models. The proposed approach is based on the component association graph and a novel descriptor that describes the geometrical arrangement of the components. The method is experimentally evaluated on a challenging benchmark dataset.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo, Temeljne tehničke znanosti, Informacijske i komunikacijske znanosti



POVEZANOST RADA


Projekti:
HRZZ-IP-2014-09-3155 - Napredna 3D percepcija za mobilne robotske manipulatore (ARP3D) (Cupec, Robert, HRZZ - 2014-09) ( CroRIS)

Ustanove:
Fakultet elektrotehnike, računarstva i informacijskih tehnologija Osijek

Profili:

Avatar Url Ivan Vidović (autor)

Avatar Url Robert Cupec (autor)

Avatar Url Petra Pejić (autor)

Poveznice na cjeloviti tekst rada:

doi www.mdpi.com

Citiraj ovu publikaciju:

Đurović, Petra; Vidović, Ivan; Cupec, Robert
Semantic Component Association within Object Classes Based on Convex Polyhedrons // Applied Sciences-Basel, 10 (2020), 8; 2641, 20 doi:10.3390/app10082641 (međunarodna recenzija, članak, znanstveni)
Đurović, P., Vidović, I. & Cupec, R. (2020) Semantic Component Association within Object Classes Based on Convex Polyhedrons. Applied Sciences-Basel, 10 (8), 2641, 20 doi:10.3390/app10082641.
@article{article, author = {\DJurovi\'{c}, Petra and Vidovi\'{c}, Ivan and Cupec, Robert}, year = {2020}, pages = {20}, DOI = {10.3390/app10082641}, chapter = {2641}, keywords = {component association, semantic segmentation, part recognition}, journal = {Applied Sciences-Basel}, doi = {10.3390/app10082641}, volume = {10}, number = {8}, issn = {2076-3417}, title = {Semantic Component Association within Object Classes Based on Convex Polyhedrons}, keyword = {component association, semantic segmentation, part recognition}, chapternumber = {2641} }
@article{article, author = {\DJurovi\'{c}, Petra and Vidovi\'{c}, Ivan and Cupec, Robert}, year = {2020}, pages = {20}, DOI = {10.3390/app10082641}, chapter = {2641}, keywords = {component association, semantic segmentation, part recognition}, journal = {Applied Sciences-Basel}, doi = {10.3390/app10082641}, volume = {10}, number = {8}, issn = {2076-3417}, title = {Semantic Component Association within Object Classes Based on Convex Polyhedrons}, keyword = {component association, semantic segmentation, part recognition}, chapternumber = {2641} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font