Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1056095

On Patient’s Characteristics Extraction for Metabolic Syndrome Diagnosis: Predictive Modelling Based on Machine Learning


Babič, František; Majnarić, Ljiljana; Lukáčová, Alexandra; Paralič, Ján; Holzinger, Andreas
On Patient’s Characteristics Extraction for Metabolic Syndrome Diagnosis: Predictive Modelling Based on Machine Learning // Information Technology in Bio- and Medical Informatics, ITBAM 2014 (2014), LNCS 8649; 118-132 doi:10.1007/978-3-319-10265-8_11 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1056095 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
On Patient’s Characteristics Extraction for Metabolic Syndrome Diagnosis: Predictive Modelling Based on Machine Learning

Autori
Babič, František ; Majnarić, Ljiljana ; Lukáčová, Alexandra ; Paralič, Ján ; Holzinger, Andreas

Izvornik
Information Technology in Bio- and Medical Informatics (0302-9743) ITBAM 2014 (2014), LNCS 8649; 118-132

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
biomedical data mining, metabolic syndrome, machine learning

Sažetak
The work presented in this paper demonstrates how different data mining approaches can be applied to extend conventional combinations of variables determining the Metabolic Syndrome with new influential variables, which are easily available in the everyday physician`s practice. The results have important consequences: patients with the Metabolic Syndrome can be recognized by using only some, one, or none of the conventional variables, when replaced with some other surrogate variables, available in patient health records, making diagnosis feasible in different work environments and at different time points of patient care. In addition, the results showed that there is a large diversity of patient groups, much larger than it was supposed earlier on when their identification was based on the conventional variables approach, indicating the underlying complexity of this syndrome. Finally, the discovered novel variables, indicating yet unknown pathogenetic pathways can be used to inspire future research.

Izvorni jezik
Engleski



POVEZANOST RADA


Ustanove:
Medicinski fakultet, Osijek

Profili:

Avatar Url Ljiljana Majnarić (autor)

Poveznice na cjeloviti tekst rada:

doi

Citiraj ovu publikaciju:

Babič, František; Majnarić, Ljiljana; Lukáčová, Alexandra; Paralič, Ján; Holzinger, Andreas
On Patient’s Characteristics Extraction for Metabolic Syndrome Diagnosis: Predictive Modelling Based on Machine Learning // Information Technology in Bio- and Medical Informatics, ITBAM 2014 (2014), LNCS 8649; 118-132 doi:10.1007/978-3-319-10265-8_11 (međunarodna recenzija, članak, znanstveni)
Babič, F., Majnarić, L., Lukáčová, A., Paralič, J. & Holzinger, A. (2014) On Patient’s Characteristics Extraction for Metabolic Syndrome Diagnosis: Predictive Modelling Based on Machine Learning. Information Technology in Bio- and Medical Informatics, ITBAM 2014 (LNCS 8649), 118-132 doi:10.1007/978-3-319-10265-8_11.
@article{article, author = {Babi\v{c}, Franti\v{s}ek and Majnari\'{c}, Ljiljana and Luk\'{a}\v{c}ov\'{a}, Alexandra and Parali\v{c}, J\'{a}n and Holzinger, Andreas}, year = {2014}, pages = {118-132}, DOI = {10.1007/978-3-319-10265-8\_11}, keywords = {biomedical data mining, metabolic syndrome, machine learning}, journal = {Information Technology in Bio- and Medical Informatics}, doi = {10.1007/978-3-319-10265-8\_11}, volume = {ITBAM 2014}, number = {LNCS 8649}, issn = {0302-9743}, title = {On Patient’s Characteristics Extraction for Metabolic Syndrome Diagnosis: Predictive Modelling Based on Machine Learning}, keyword = {biomedical data mining, metabolic syndrome, machine learning} }
@article{article, author = {Babi\v{c}, Franti\v{s}ek and Majnari\'{c}, Ljiljana and Luk\'{a}\v{c}ov\'{a}, Alexandra and Parali\v{c}, J\'{a}n and Holzinger, Andreas}, year = {2014}, pages = {118-132}, DOI = {10.1007/978-3-319-10265-8\_11}, keywords = {biomedical data mining, metabolic syndrome, machine learning}, journal = {Information Technology in Bio- and Medical Informatics}, doi = {10.1007/978-3-319-10265-8\_11}, volume = {ITBAM 2014}, number = {LNCS 8649}, issn = {0302-9743}, title = {On Patient’s Characteristics Extraction for Metabolic Syndrome Diagnosis: Predictive Modelling Based on Machine Learning}, keyword = {biomedical data mining, metabolic syndrome, machine learning} }

Časopis indeksira:


  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font