Pregled bibliografske jedinice broj: 1055849
Guiding the Illumination Estimation Using the Attention Mechanism
Guiding the Illumination Estimation Using the Attention Mechanism // Proceedings of the 2020 2nd Asia Pacific Information Technology Conference
Bali, Indonezija: Association for Computing Machinery (ACM), 2020. str. 143-149 doi:10.1145/3379310.3379329 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1055849 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Guiding the Illumination Estimation Using the
Attention Mechanism
Autori
Koščević, Karlo ; Subašić Marko ; Lončarić, Sven
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of the 2020 2nd Asia Pacific Information Technology Conference
/ - : Association for Computing Machinery (ACM), 2020, 143-149
ISBN
9781450376853
Skup
2nd Asia Pacific Information Technology Conference (APIT 2020)
Mjesto i datum
Bali, Indonezija, 17.01.2020. - 19.01.2020
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
neural network ; image processing ; deep learning ; convolution ; computational color constancy ; regression ; attention mechanism ; white balancing
Sažetak
Deep learning methods have achieved a large step forward in many computer vision applications. With mechanisms such as attention, deep models can now guide themselves to focus on parts of an image that are more significant for a given task. In computational color constancy, the most important step is to estimate the illumination vector as accurately as possible. Since illumination estimation algorithms can be sensitive to noise, such as ambiguous regions in the image, the ability to have a mechanism to look for specific regions in an image could be helpful. In this paper, a convolutional neural network with an attention mechanism is proposed. The attention mechanism helps the network to focus on regions that contain more content and to avoid regions where ambiguous estimations may occur. In the experimental results, it is shown that the attention mechanism does help the network to obtain more accurate estimations and puts the focus of the network on the regions in an image where gradients are high. The network with the attention mechanism achieves up to 10% increase in accuracy compared to the same network architecture without the attention mechanism.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
POVEZANOST RADA
Projekti:
HRZZ-IP-2016-06-2092 - Metode i algoritmi za poboljšanje slika u boji u stvarnom vremenu (PerfectColor) (Lončarić, Sven, HRZZ ) ( CroRIS)
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb