Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1055353

Automatic Annotation of Narrative Radiology Reports


Krsnik, Ivan; Glavaš, Goran; Krsnik, Marina; Miletić, Damir; Štajduhar, Ivan
Automatic Annotation of Narrative Radiology Reports // Diagnostics, 10 (2020), 4; 196, 15 doi:10.3390/diagnostics10040196 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1055353 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Automatic Annotation of Narrative Radiology Reports

Autori
Krsnik, Ivan ; Glavaš, Goran ; Krsnik, Marina ; Miletić, Damir ; Štajduhar, Ivan

Izvornik
Diagnostics (2075-4418) 10 (2020), 4; 196, 15

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
free-form radiology report ; automatic labelling ; decision support system ; natural language processing ; machine learning ; word embedding ; knee

Sažetak
Narrative texts in electronic health records can be efficiently utilized for building decision support systems in the clinic, only if they are correctly interpreted automatically in accordance with a specified standard. This paper tackles the problem of developing an automated method of labeling free-form radiology reports, as a precursor for building query-capable report databases in hospitals. The analyzed dataset consists of 1295 radiology reports concerning the condition of a knee, retrospectively gathered at the Clinical Hospital Centre Rijeka, Croatia. Reports were manually labeled with one or more labels from a set of 10 most commonly occurring clinical conditions. After primary preprocessing of the texts, two sets of text classification methods were compared: (1) traditional classification models—Naive Bayes (NB), Logistic Regression (LR), Support Vector Machine (SVM), and Random Forests (RF)—coupled with Bag-of-Words (BoW) features (i.e., symbolic text representation) and (2) Convolutional Neural Network (CNN) coupled with dense word vectors (i.e., word embeddings as a semantic text representation) as input features. We resorted to nested 10- fold cross-validation to evaluate the performance of competing methods using accuracy, precision, recall, and F1 score. The CNN with semantic word representations as input yielded the overall best performance, having a micro-averaged F1 score of 86.7% . The CNN classifier yielded particularly encouraging results for the most represented conditions: degenerative disease (95.9%), arthrosis (93.3%), and injury (89.2%). As a data-hungry deep learning model, the CNN, however, performed notably worse than the competing models on underrepresented classes with fewer training instances such as multicausal disease or metabolic disease. LR, RF, and SVM performed comparably well, with the obtained micro- averaged F1 scores of 84.6%, 82.2% , and 82.1% , respectively.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo, Kliničke medicinske znanosti



POVEZANOST RADA


Ustanove:
Veterinarski fakultet, Zagreb,
Medicinski fakultet, Rijeka,
Tehnički fakultet, Rijeka

Profili:

Avatar Url Damir Miletić (autor)

Avatar Url Ivan Štajduhar (autor)

Avatar Url Goran Glavaš (autor)

Poveznice na cjeloviti tekst rada:

doi www.mdpi.com

Citiraj ovu publikaciju:

Krsnik, Ivan; Glavaš, Goran; Krsnik, Marina; Miletić, Damir; Štajduhar, Ivan
Automatic Annotation of Narrative Radiology Reports // Diagnostics, 10 (2020), 4; 196, 15 doi:10.3390/diagnostics10040196 (međunarodna recenzija, članak, znanstveni)
Krsnik, I., Glavaš, G., Krsnik, M., Miletić, D. & Štajduhar, I. (2020) Automatic Annotation of Narrative Radiology Reports. Diagnostics, 10 (4), 196, 15 doi:10.3390/diagnostics10040196.
@article{article, author = {Krsnik, Ivan and Glava\v{s}, Goran and Krsnik, Marina and Mileti\'{c}, Damir and \v{S}tajduhar, Ivan}, year = {2020}, pages = {15}, DOI = {10.3390/diagnostics10040196}, chapter = {196}, keywords = {free-form radiology report, automatic labelling, decision support system, natural language processing, machine learning, word embedding, knee}, journal = {Diagnostics}, doi = {10.3390/diagnostics10040196}, volume = {10}, number = {4}, issn = {2075-4418}, title = {Automatic Annotation of Narrative Radiology Reports}, keyword = {free-form radiology report, automatic labelling, decision support system, natural language processing, machine learning, word embedding, knee}, chapternumber = {196} }
@article{article, author = {Krsnik, Ivan and Glava\v{s}, Goran and Krsnik, Marina and Mileti\'{c}, Damir and \v{S}tajduhar, Ivan}, year = {2020}, pages = {15}, DOI = {10.3390/diagnostics10040196}, chapter = {196}, keywords = {free-form radiology report, automatic labelling, decision support system, natural language processing, machine learning, word embedding, knee}, journal = {Diagnostics}, doi = {10.3390/diagnostics10040196}, volume = {10}, number = {4}, issn = {2075-4418}, title = {Automatic Annotation of Narrative Radiology Reports}, keyword = {free-form radiology report, automatic labelling, decision support system, natural language processing, machine learning, word embedding, knee}, chapternumber = {196} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
    • Emerging Sources Citation Index (ESCI)
  • Scopus


Uključenost u ostale bibliografske baze podataka::


  • INSPEC


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font