Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1054708

Using DICOM Tags for Clustering Medical Radiology Images into Visually Similar Groups


Manojlović, Teo; Ilić, Dino; Miletić, Damir; Štajduhar, Ivan
Using DICOM Tags for Clustering Medical Radiology Images into Visually Similar Groups // Proceedings of the 9th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM / De Marsico, Maria ; Sanniti di Baja, Gabriella ; Fred , Ana (ur.).
Setúbal: SCITEPRESS, 2020. str. 510-517 doi:10.5220/0008973405100517 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 1054708 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Using DICOM Tags for Clustering Medical Radiology Images into Visually Similar Groups

Autori
Manojlović, Teo ; Ilić, Dino ; Miletić, Damir ; Štajduhar, Ivan

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proceedings of the 9th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM / De Marsico, Maria ; Sanniti di Baja, Gabriella ; Fred , Ana - Setúbal : SCITEPRESS, 2020, 510-517

ISBN
978-989-758-397-1

Skup
9th International Conference on Pattern Recognition Applications and Methods (ICPRAM 2020)

Mjesto i datum
Valletta, Malta, 22.02.2020. - 24.02.2020

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
PACS ; DICOM ; Medical Imaging ; Visual Similarity ; Clustering ; K-medoids

Sažetak
The data stored in a Picture Archiving and Communication System (PACS) of a clinical centre normally consists of medical images recorded from patients using select imaging techniques, and stored metadata information concerning the details on the conducted diagnostic procedures - the latter being commonly stored using the Digital Imaging and Communications in Medicine (DICOM) standard. In this work, we explore the possibility of utilising DICOM tags for automatic annotation of PACS databases, using K-medoids clustering. We gather and analyse DICOM data of medical radiology images available as a part of the RadiologyNet database, which was built in 2017, and originates from the Clinical Hospital Centre Rijeka, Croatia. Following data preprocessing, we used K-medoids clustering for multiple values of K, and we chose the most appropriate number of clusters based on the silhouette score. Next, for evaluating the clustering performance with regard to the visual similarity of images, we trained an autoencoder from a non-overlapping set of images. That way, we estimated the visual similarity of pixel data clustered by DICOM tags. Paired t-test (p < 0:001) suggests a significant difference between the mean distance from cluster centres of images clustered by DICOM tags, and randomly-permuted cluster labels.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Ustanove:
Medicinski fakultet, Rijeka,
Tehnički fakultet, Rijeka

Profili:

Avatar Url Damir Miletić (autor)

Avatar Url Ivan Štajduhar (autor)

Poveznice na cjeloviti tekst rada:

doi www.scitepress.org

Citiraj ovu publikaciju:

Manojlović, Teo; Ilić, Dino; Miletić, Damir; Štajduhar, Ivan
Using DICOM Tags for Clustering Medical Radiology Images into Visually Similar Groups // Proceedings of the 9th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM / De Marsico, Maria ; Sanniti di Baja, Gabriella ; Fred , Ana (ur.).
Setúbal: SCITEPRESS, 2020. str. 510-517 doi:10.5220/0008973405100517 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Manojlović, T., Ilić, D., Miletić, D. & Štajduhar, I. (2020) Using DICOM Tags for Clustering Medical Radiology Images into Visually Similar Groups. U: De Marsico, M., Sanniti di Baja, G. & Fred , A. (ur.)Proceedings of the 9th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM doi:10.5220/0008973405100517.
@article{article, author = {Manojlovi\'{c}, Teo and Ili\'{c}, Dino and Mileti\'{c}, Damir and \v{S}tajduhar, Ivan}, year = {2020}, pages = {510-517}, DOI = {10.5220/0008973405100517}, keywords = {PACS, DICOM, Medical Imaging, Visual Similarity, Clustering, K-medoids}, doi = {10.5220/0008973405100517}, isbn = {978-989-758-397-1}, title = {Using DICOM Tags for Clustering Medical Radiology Images into Visually Similar Groups}, keyword = {PACS, DICOM, Medical Imaging, Visual Similarity, Clustering, K-medoids}, publisher = {SCITEPRESS}, publisherplace = {Valletta, Malta} }
@article{article, author = {Manojlovi\'{c}, Teo and Ili\'{c}, Dino and Mileti\'{c}, Damir and \v{S}tajduhar, Ivan}, year = {2020}, pages = {510-517}, DOI = {10.5220/0008973405100517}, keywords = {PACS, DICOM, Medical Imaging, Visual Similarity, Clustering, K-medoids}, doi = {10.5220/0008973405100517}, isbn = {978-989-758-397-1}, title = {Using DICOM Tags for Clustering Medical Radiology Images into Visually Similar Groups}, keyword = {PACS, DICOM, Medical Imaging, Visual Similarity, Clustering, K-medoids}, publisher = {SCITEPRESS}, publisherplace = {Valletta, Malta} }

Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font