Pregled bibliografske jedinice broj: 1054708
Using DICOM Tags for Clustering Medical Radiology Images into Visually Similar Groups
Using DICOM Tags for Clustering Medical Radiology Images into Visually Similar Groups // Proceedings of the 9th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM / De Marsico, Maria ; Sanniti di Baja, Gabriella ; Fred , Ana (ur.).
Setúbal: SCITEPRESS, 2020. str. 510-517 doi:10.5220/0008973405100517 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1054708 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Using DICOM Tags for Clustering Medical Radiology
Images into Visually Similar Groups
Autori
Manojlović, Teo ; Ilić, Dino ; Miletić, Damir ; Štajduhar, Ivan
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of the 9th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM
/ De Marsico, Maria ; Sanniti di Baja, Gabriella ; Fred , Ana - Setúbal : SCITEPRESS, 2020, 510-517
ISBN
978-989-758-397-1
Skup
9th International Conference on Pattern Recognition Applications and Methods (ICPRAM 2020)
Mjesto i datum
Valletta, Malta, 22.02.2020. - 24.02.2020
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
PACS ; DICOM ; Medical Imaging ; Visual Similarity ; Clustering ; K-medoids
Sažetak
The data stored in a Picture Archiving and Communication System (PACS) of a clinical centre normally consists of medical images recorded from patients using select imaging techniques, and stored metadata information concerning the details on the conducted diagnostic procedures - the latter being commonly stored using the Digital Imaging and Communications in Medicine (DICOM) standard. In this work, we explore the possibility of utilising DICOM tags for automatic annotation of PACS databases, using K-medoids clustering. We gather and analyse DICOM data of medical radiology images available as a part of the RadiologyNet database, which was built in 2017, and originates from the Clinical Hospital Centre Rijeka, Croatia. Following data preprocessing, we used K-medoids clustering for multiple values of K, and we chose the most appropriate number of clusters based on the silhouette score. Next, for evaluating the clustering performance with regard to the visual similarity of images, we trained an autoencoder from a non-overlapping set of images. That way, we estimated the visual similarity of pixel data clustered by DICOM tags. Paired t-test (p < 0:001) suggests a significant difference between the mean distance from cluster centres of images clustered by DICOM tags, and randomly-permuted cluster labels.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
POVEZANOST RADA
Ustanove:
Medicinski fakultet, Rijeka,
Tehnički fakultet, Rijeka