Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1054527

Deep learning approaches for intraoperative pixel-based diagnosis of colon cancer metastasis in a liver from phase-contrast images of unstained specimens


Sitnik, Dario; Aralica, Gorana; Pačić, Arijana; Popović Hadžija, Marijana; Hadžija, Mirko; Kopriva, Ivica
Deep learning approaches for intraoperative pixel-based diagnosis of colon cancer metastasis in a liver from phase-contrast images of unstained specimens // Digital Pathology Conference - SPIE Medical Imaging Symposium 2020 / Tomaszewski, John E. ; Ward, Aaron D. (ur.).
Bellingham (WA): SPIE, 2020. 1132009, 11 doi:10.1117/12.2542799 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 1054527 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Deep learning approaches for intraoperative pixel-based diagnosis of colon cancer metastasis in a liver from phase-contrast images of unstained specimens

Autori
Sitnik, Dario ; Aralica, Gorana ; Pačić, Arijana ; Popović Hadžija, Marijana ; Hadžija, Mirko ; Kopriva, Ivica

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Digital Pathology Conference - SPIE Medical Imaging Symposium 2020 / Tomaszewski, John E. ; Ward, Aaron D. - Bellingham (WA) : SPIE, 2020

Skup
SPIE Medical Imaging Symposium 2020

Mjesto i datum
Houston (TX), Sjedinjene Američke Države, 15.02.2020. - 20.02.2020

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
U-net ; Structured autoencoders ; intraoperative diagnosis ; colon cancer metastasis in a liver ; phase-contrast imaging ; unstained specimens

Sažetak
There is a need for computer-aided diagnosis (CAD) systems to relieve the workload on pathologists. This seems to be especially important for intraoperative diagnosis during surgery, for which diagnostic time is very limited. This paper presents preliminary results of intraoperative pixel-based CAD of colon cancer metastasis in a liver from phase- contrast images of unstained frozen sections. In particular, two deep learning networks: the U-net and the structured autoencoder for deep subspace clustering, were trained on eighteen phase-contrast images belonging to five patients and tested on eight images belonging to three patients. Spectrum angle mapper was also used in comparative performance analysis. The best result achieved by the U-net yielded balanced accuracy of 83.70%±8%, sensitivity of 94.50%±8%, specificity of 72.9%±8% and Dice coefficient of 45.20%±25.4%. However, factors such as absence of tissue fixation and ethanol- induced dehydration, melting of the specimen under the microscope and/or frozen crystals in the specimen cause variations in quality of phase-contrast images of unstained frozen sections. This, in return, affects reproducibility of diagnostic performance.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo, Kliničke medicinske znanosti



POVEZANOST RADA


Projekti:
HRZZ-IP-2016-06-5235 - Strukturne dekompozicije empirijskih podataka za računalno potpomognutu dijagnostiku bolesti (DEDAD) (Kopriva, Ivica, HRZZ - 2016-06) ( CroRIS)
KK.01.1.1.01.0009 - Napredne metode i tehnologije u znanosti o podatcima i kooperativnim sustavima (EK )

Ustanove:
Institut "Ruđer Bošković", Zagreb,
Klinička bolnica "Dubrava"

Poveznice na cjeloviti tekst rada:

Pristup cjelovitom tekstu rada doi doi.org

Citiraj ovu publikaciju:

Sitnik, Dario; Aralica, Gorana; Pačić, Arijana; Popović Hadžija, Marijana; Hadžija, Mirko; Kopriva, Ivica
Deep learning approaches for intraoperative pixel-based diagnosis of colon cancer metastasis in a liver from phase-contrast images of unstained specimens // Digital Pathology Conference - SPIE Medical Imaging Symposium 2020 / Tomaszewski, John E. ; Ward, Aaron D. (ur.).
Bellingham (WA): SPIE, 2020. 1132009, 11 doi:10.1117/12.2542799 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Sitnik, D., Aralica, G., Pačić, A., Popović Hadžija, M., Hadžija, M. & Kopriva, I. (2020) Deep learning approaches for intraoperative pixel-based diagnosis of colon cancer metastasis in a liver from phase-contrast images of unstained specimens. U: Tomaszewski, J. & Ward, A. (ur.)Digital Pathology Conference - SPIE Medical Imaging Symposium 2020 doi:10.1117/12.2542799.
@article{article, author = {Sitnik, Dario and Aralica, Gorana and Pa\v{c}i\'{c}, Arijana and Popovi\'{c} Had\v{z}ija, Marijana and Had\v{z}ija, Mirko and Kopriva, Ivica}, year = {2020}, pages = {11}, DOI = {10.1117/12.2542799}, chapter = {1132009}, keywords = {U-net, Structured autoencoders, intraoperative diagnosis, colon cancer metastasis in a liver, phase-contrast imaging, unstained specimens}, doi = {10.1117/12.2542799}, title = {Deep learning approaches for intraoperative pixel-based diagnosis of colon cancer metastasis in a liver from phase-contrast images of unstained specimens}, keyword = {U-net, Structured autoencoders, intraoperative diagnosis, colon cancer metastasis in a liver, phase-contrast imaging, unstained specimens}, publisher = {SPIE}, publisherplace = {Houston (TX), Sjedinjene Ameri\v{c}ke Dr\v{z}ave}, chapternumber = {1132009} }
@article{article, author = {Sitnik, Dario and Aralica, Gorana and Pa\v{c}i\'{c}, Arijana and Popovi\'{c} Had\v{z}ija, Marijana and Had\v{z}ija, Mirko and Kopriva, Ivica}, year = {2020}, pages = {11}, DOI = {10.1117/12.2542799}, chapter = {1132009}, keywords = {U-net, Structured autoencoders, intraoperative diagnosis, colon cancer metastasis in a liver, phase-contrast imaging, unstained specimens}, doi = {10.1117/12.2542799}, title = {Deep learning approaches for intraoperative pixel-based diagnosis of colon cancer metastasis in a liver from phase-contrast images of unstained specimens}, keyword = {U-net, Structured autoencoders, intraoperative diagnosis, colon cancer metastasis in a liver, phase-contrast imaging, unstained specimens}, publisher = {SPIE}, publisherplace = {Houston (TX), Sjedinjene Ameri\v{c}ke Dr\v{z}ave}, chapternumber = {1132009} }

Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font