Pregled bibliografske jedinice broj: 1054527
Deep learning approaches for intraoperative pixel-based diagnosis of colon cancer metastasis in a liver from phase-contrast images of unstained specimens
Deep learning approaches for intraoperative pixel-based diagnosis of colon cancer metastasis in a liver from phase-contrast images of unstained specimens // Digital Pathology Conference - SPIE Medical Imaging Symposium 2020 / Tomaszewski, John E. ; Ward, Aaron D. (ur.).
Bellingham (WA): SPIE, 2020. 1132009, 11 doi:10.1117/12.2542799 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1054527 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Deep learning approaches for intraoperative
pixel-based diagnosis of colon cancer
metastasis in a liver from phase-contrast
images of unstained specimens
Autori
Sitnik, Dario ; Aralica, Gorana ; Pačić, Arijana ; Popović Hadžija, Marijana ; Hadžija, Mirko ; Kopriva, Ivica
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Digital Pathology Conference - SPIE Medical Imaging Symposium 2020
/ Tomaszewski, John E. ; Ward, Aaron D. - Bellingham (WA) : SPIE, 2020
Skup
SPIE Medical Imaging Symposium 2020
Mjesto i datum
Houston (TX), Sjedinjene Američke Države, 15.02.2020. - 20.02.2020
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
U-net ; Structured autoencoders ; intraoperative diagnosis ; colon cancer metastasis in a liver ; phase-contrast imaging ; unstained specimens
Sažetak
There is a need for computer-aided diagnosis (CAD) systems to relieve the workload on pathologists. This seems to be especially important for intraoperative diagnosis during surgery, for which diagnostic time is very limited. This paper presents preliminary results of intraoperative pixel-based CAD of colon cancer metastasis in a liver from phase- contrast images of unstained frozen sections. In particular, two deep learning networks: the U-net and the structured autoencoder for deep subspace clustering, were trained on eighteen phase-contrast images belonging to five patients and tested on eight images belonging to three patients. Spectrum angle mapper was also used in comparative performance analysis. The best result achieved by the U-net yielded balanced accuracy of 83.70%±8%, sensitivity of 94.50%±8%, specificity of 72.9%±8% and Dice coefficient of 45.20%±25.4%. However, factors such as absence of tissue fixation and ethanol- induced dehydration, melting of the specimen under the microscope and/or frozen crystals in the specimen cause variations in quality of phase-contrast images of unstained frozen sections. This, in return, affects reproducibility of diagnostic performance.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo, Kliničke medicinske znanosti
POVEZANOST RADA
Projekti:
HRZZ-IP-2016-06-5235 - Strukturne dekompozicije empirijskih podataka za računalno potpomognutu dijagnostiku bolesti (DEDAD) (Kopriva, Ivica, HRZZ - 2016-06) ( CroRIS)
KK.01.1.1.01.0009 - Napredne metode i tehnologije u znanosti o podatcima i kooperativnim sustavima (EK )
Ustanove:
Institut "Ruđer Bošković", Zagreb,
Klinička bolnica "Dubrava"
Profili:
Mirko Hadžija (autor)
Marijana Popović-Hadžija (autor)
Gorana Aralica (autor)
Dario Sitnik (autor)
Ivica Kopriva (autor)
Arijana Pačić (autor)