Pregled bibliografske jedinice broj: 1054523
Transfer Learning Approach for Intraoperative Pixel-based Diagnosis of Colon Cancer Metastasis in a Liver from Hematohylin-Eosin Stained Specimens
Transfer Learning Approach for Intraoperative Pixel-based Diagnosis of Colon Cancer Metastasis in a Liver from Hematohylin-Eosin Stained Specimens // Proceedings Volume 11320, Medical Imaging 2020: Digital Pathology ; 1132009 (2020) / Tomaszewski, John E. ; Ward, Aaron D. (ur.).
Bellingham (WA): SPIE, 2020. 113200A, 12 doi:10.1117/12.2538303 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1054523 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Transfer Learning Approach for Intraoperative
Pixel-based Diagnosis of Colon Cancer Metastasis
in a Liver from Hematohylin-Eosin Stained
Specimens
(Transfer Learning Approach for Intraoperative
Pixel-based Diagnosis of Colon Cancer
Metastasis in a Liver from Hematohylin-Eosin
Stained Specimens)
Autori
Sitnik, Dario ; Kopriva, Ivica ; Aralica, Gorana ; Pačić, Arijana ; Popović Hadžija, Marijana ; Hadžija, Mirko
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings Volume 11320, Medical Imaging 2020: Digital Pathology ; 1132009 (2020)
/ Tomaszewski, John E. ; Ward, Aaron D. - Bellingham (WA) : SPIE, 2020
Skup
SPIE Medical Imaging Symposium 2020
Mjesto i datum
Houston (TX), Sjedinjene Američke Države, 15.02.2020. - 20.02.2020
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
UNet ; transfer learning ; segmentation ; intraoperative diagnosis ; hematoxylin-eosin
Sažetak
Development of computer-aided diagnosis (CAD) systems is motivated by reduction of the workload on the pathologist that is increasing steadily. Among approaches upon which CAD-based systems are built, deep learning (DL) methods seem to be well suited for image analysis in digital pathology. However, DL networks include a large number of parameters and that requires a large annotated training dataset. Unfortunately, probably the biggest problem in digital pathology using machine learning methods is a small number of annotated images. That is especially true in intraoperative tissue analysis which coincides with the topic of the present paper: intraoperative CAD-based diagnosis of metastasis of colon cancer in a liver from hematoxylin-eosin (H&E) stained frozen section. To cope with the insufficiency of training images we adopt a transfer learning approach using the Nested UNet architecture. For better diagnostic performance, the trained model predicted pixels multiple times for different striding levels using the sliding window strategy. Threshold optimization using balanced accuracy score showed the validity of such an approach as balanced accuracy has increased significantly. When compared to often used UNet with VGG16 backbone, Nested UNet model with DenseNet201 backbone performs better on our dataset for both balanced accuracy metric and F1 score.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo, Kliničke medicinske znanosti
POVEZANOST RADA
Projekti:
HRZZ-IP-2016-06-5235 - Strukturne dekompozicije empirijskih podataka za računalno potpomognutu dijagnostiku bolesti (DEDAD) (Kopriva, Ivica, HRZZ - 2016-06) ( CroRIS)
Ustanove:
Institut "Ruđer Bošković", Zagreb,
Klinička bolnica "Dubrava"
Profili:
Mirko Hadžija
(autor)
Marijana Popović-Hadžija
(autor)
Gorana Aralica
(autor)
Dario Sitnik
(autor)
Arijana Pačić
(autor)
Ivica Kopriva
(autor)