Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1054345

An adaptive annotation approach for biomedical entity and relation recognition


Yimam, Seid Muhie; Biemann, Chris; Majnaric, Ljiljana; Šabanović, Šefket; Holzinger, Andreas
An adaptive annotation approach for biomedical entity and relation recognition // Brain informatics, 3 (2016), 3; 157-168 doi:10.1007/s40708-016-0036-4 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1054345 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
An adaptive annotation approach for biomedical entity and relation recognition

Autori
Yimam, Seid Muhie ; Biemann, Chris ; Majnaric, Ljiljana ; Šabanović, Šefket ; Holzinger, Andreas

Izvornik
Brain informatics (2198-4018) 3 (2016), 3; 157-168

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Interactive annotation Machine learning Knowledge discovery Data mining Human in the loop Biomedical entity recognition Relation learning

Sažetak
In this article, we demonstrate the impact of interactive machine learning: we develop biomedical entity recognition dataset using a human-into-the-loop approach. In contrary to classical machine learning, human-in-theloop approaches do not operate on predefined training or test sets, but assume that human input regarding system improvement is supplied iteratively. Here, during annotation, a machine learning model is built on previous annotations and used to propose labels for subsequent annotation. To demonstrate that such interactive and iterative annotation speeds up the development of quality dataset annotation, we conduct three experiments. In the first experiment, we carry out an iterative annotation experimental simulation and show that only a handful of medical abstracts need to be annotated to produce suggestions that increase annotation speed. In the second experiment, clinical doctors have conducted a case study in annotating medical terms documents relevant for their research. The third experiment explores the annotation of semantic relations with relation instance learning across documents. The experiments validate our method qualitatively and quantitatively, and give rise to a more personalized, responsive information extraction technology.

Izvorni jezik
Engleski



POVEZANOST RADA


Ustanove:
Medicinski fakultet, Osijek

Profili:

Avatar Url Ljiljana Majnarić (autor)

Poveznice na cjeloviti tekst rada:

doi

Citiraj ovu publikaciju:

Yimam, Seid Muhie; Biemann, Chris; Majnaric, Ljiljana; Šabanović, Šefket; Holzinger, Andreas
An adaptive annotation approach for biomedical entity and relation recognition // Brain informatics, 3 (2016), 3; 157-168 doi:10.1007/s40708-016-0036-4 (međunarodna recenzija, članak, znanstveni)
Yimam, S., Biemann, C., Majnaric, L., Šabanović, Š. & Holzinger, A. (2016) An adaptive annotation approach for biomedical entity and relation recognition. Brain informatics, 3 (3), 157-168 doi:10.1007/s40708-016-0036-4.
@article{article, author = {Yimam, Seid Muhie and Biemann, Chris and Majnaric, Ljiljana and \v{S}abanovi\'{c}, \v{S}efket and Holzinger, Andreas}, year = {2016}, pages = {157-168}, DOI = {10.1007/s40708-016-0036-4}, keywords = {Interactive annotation Machine learning Knowledge discovery Data mining Human in the loop Biomedical entity recognition Relation learning}, journal = {Brain informatics}, doi = {10.1007/s40708-016-0036-4}, volume = {3}, number = {3}, issn = {2198-4018}, title = {An adaptive annotation approach for biomedical entity and relation recognition}, keyword = {Interactive annotation Machine learning Knowledge discovery Data mining Human in the loop Biomedical entity recognition Relation learning} }
@article{article, author = {Yimam, Seid Muhie and Biemann, Chris and Majnaric, Ljiljana and \v{S}abanovi\'{c}, \v{S}efket and Holzinger, Andreas}, year = {2016}, pages = {157-168}, DOI = {10.1007/s40708-016-0036-4}, keywords = {Interactive annotation Machine learning Knowledge discovery Data mining Human in the loop Biomedical entity recognition Relation learning}, journal = {Brain informatics}, doi = {10.1007/s40708-016-0036-4}, volume = {3}, number = {3}, issn = {2198-4018}, title = {An adaptive annotation approach for biomedical entity and relation recognition}, keyword = {Interactive annotation Machine learning Knowledge discovery Data mining Human in the loop Biomedical entity recognition Relation learning} }

Časopis indeksira:


  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font