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Abstract 
Suppression of speckle artifact in optical coherence tomography (OCT) is necessary for high 
quality quantitative assessment of ocular disorders associated with vision loss. However, due to its 
dual role as a source of noise and as a carrier of information about tissue microstructure, complete 
suppression of speckle is not desirable. That is what represents challenge in development of 
methods for speckle suppression. We propose method for additive decomposition of a matrix into 
low-rank and group sparsity constrained terms. Group sparsity constraint represents novelty in 
relation to state-of-the-art in low-rank sparse additive matrix decompositions. Group sparsity 
enforces more noise-related speckle to be absorbed by the sparse term of decomposition. Thus, the 
low-rank term is expected to enhance the OCT image further. In particular, proposed method uses 
the elastic net regularizer to induce the grouping effect. Its proximity operator is shrunken version 
of the soft-thresholding operator. Thus, the group sparsity regularization adds no extra 
computational complexity in comparison with the 1  norm regularized problem. We derive 
alternating direction method of multipliers based algorithm for related optimization problem. New 
method for speckle suppression is automatic and computationally efficient. The method is validated 
in comparison with state-of-the-art on ten 3D macular-centered OCT images of normal eyes. It 
yields OCT image with improved contrast-to-noise ratio, signal-to-noise ratio, contrast and edge 
fidelity (sharpness). 
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1 INTRODUCTION 
 
Speckle is inherent random signal modulation caused by spatial and temporal coherence of the 
optical waves. The coherence represents basis for interferometry, the measurement technique upon 
which optical coherence tomography (OCT) is founded [1-3]. Thus, speckle has dual role as a 
source of noise and as a carrier of information about tissue microstructure [2]. Therefore, complete 
speckle reduction is not desirable. However, in OCT images of biological specimens speckle 
reduce contrast and make boundaries between constitutive tissues more difficult to resolve [1, 2, 4]. 
That, in return, stands for major obstacle in quantitative OCT image analysis, [1, 5, 2], what is 
necessary to discriminate pathological states of tissue, [6, 7], such as cystoid macular edema [8], 
central retinal artery occlusion [9], atherosclerosis plaques [10], etc. Speckle reduction techniques 
belong to two groups: physical compounding and digital filtering [1]. The physical compounding 
strategies achieve OCT image quality improvement proportional to the square root of the number of 
realizations. Digital filtering methods aim to reduce speckle through post-processing of OCT 
image, while preserving image resolution, contrast and edge fidelity [11-13]. However, as it is 
demonstrated in [14], state-of-the-art digital filtering methods such as median filtering, can even 
decrease sharpness when reducing speckle. Therefore, conceptually new low-rank and sparsity 
decomposition method, named enhanced low-rank plus sparsity decomposition (ELpSD) algorithm, 
was proposed in [14] to reduce speckle in OCT images. The method proposed herein stands for 
new contribution in additive matrix decomposition into sum of low-rank and sparse matrices. The 
novelty is related to hybrid regularization for sparseness in order to achieve the grouping effect. 
The group sparsity constraint, as opposed to sparsity constraint only, is relevant in feature selection 
via sparse regression when features within some group are correlated [15, 16]. Sparsity constraint 
alone picks up only the most dominant variable within the group. The fact that speckle belong to 
two groups, the one provided information on tissue microstructure and the one related to noise, 
motivated us to develop group sparsity constrained method for speckle reduction. That is expected 
to further enforce noise-related speckle to be absorbed in sparsity term of additive OCT image 
decomposition. That, in turn, is expected to further improve quality of enhanced OCT image. Let us 
denote logarithm of the intensity of one 2D OCT image as X. Exact decomposition X=L+S, where 
L stands for the low-rank and S for sparse matrix, has been known under the name robust principal 
component analysis (RPCA) [17] or rank-sparsity decomposition [18]. As properly noted in [19], 
adding the "noise" term G to the RPCA model, that is X=L+S+G, describes empirical data more 
realistically. However, the fundamental issue in low-rank and sparse decomposition is accuracy of 
approximation of rank and sparseness. Both functions are discrete and non-convex and stand for, 
respectively, number of nonzero singular values of L and number of nonzero coefficients of S. To 
avoid difficulties associated with discrete non-polynomial (NP)-hard optimization, rank and 
sparseness minimization problems are often replaced by convex relaxation [17, 20-23]. In case of 
rank that is known as nuclear- or Schatten-1 norm, [24, 25], and it stands for 1 -norm of the vector 
of singular values. In case of sparseness, convex relaxation refers to 1 -norm of a corresponding 
matrix. Several recent studies have emphasized the benefit of nonconvex penalty functions 
compared to the nuclear norm for the estimation of the singular values [26, 20, 27, 28]. In 
particular, it has been presented in [26] how nonconvex regularization, that promotes sparser 
approximation of singular values [29], can be combined into convex optimization problem related 
to the estimation of the low-rank matrices. This regularization has been used in [14] to develop the 
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ELRpSD speckle reduction method. However, to further reduce influence of the speckle noise we 
propose to introduce the group sparsity regularization for S in the presence of additive white 
Gaussian noise (AWGN) G, i.e. X=L+S+G. In particular, in comparison with the ELRpSD method 
[14], that uses non-convex regularizer for a rank of L and 1 -norm regularizer for sparseness of S, 
proposed method uses hybrid 1 2+ -norm regularizer for (group) sparsity of S. The 1 2+ -norm 
regularizer, a.k.a. the elastic net regularizer [30], induces the grouping effect. Nonetheless, it is also 
important that its proximity operator is actually shrunken version of the soft-thresholding operator 
(it represents the proximity operator of the 1  norm) [31]. Thus, the group sparsity regularization 
adds no extra computational complexity in comparison with the ELRpSD method. It actually 
increases speed of convergence. We name the proposed method enhanced low-rank plus group 
sparsity decomposition (ELRpGSD). As it is demonstrated in Sec. 3, it yields OCT image with 
simultaneously improved contrast-to-noise ratio (CNR), signal-to-noise ratio (SNR), contrast and 
edge fidelity (sharpness). In particular, depending on the value of the constant related to the 
additional 2  regularization term, CNR and contrast can be improved significantly in comparison 
with the ELRpSD method while SNR and sharpness are decreased mildly. Thus, depending on the 
relative importance of the each image quality metric the group sparsity regularization can bring 
additional improvement of the quality of OCT images. Because they use the same regularization for 
rank, the ELRpGSD method analogously to the ELRpSD method does not require a priori 
information of the rank value. That in combination with the group sparsity regularization represents 
the main distinctions with respect to the RPCA based methods for OCT image enhancement [32, 
33]. The ELRpGSD method is illustrated in Figs. 1(a) to 1(c). For the sake of visual comparison we 
present, in respective order, in Fig. 1(d) to Fig. 1(g) results of OCT image enhancement by 
ELRpSD algorithm [14], by the GoDec algorithm [17] as well as by 2D bilateral and median 
filtering (see Sec. 3 for more details). The rest of this paper is organized as follows. The details of 
the proposed ELRpSGD method are presented in Sec. 2. That is followed by an experimental 
comparative performance analysis in Sec. 3 and the discussion in Sec. 4. The conclusions are 
presented in Sec. 5. 
 

2 MATERIALS AND METHODS 

Let 1 2
0
I I×
+∈X   be one scan of the 3D OCT image with the size of I1×I2 pixels. The speckle, which 

occurs due to the random scattering of the light on tissues, acts effectively as multiplicative noise 
[1]. That is, ( ) ( ) ( )1 2 1 2 1 2, , ,x i i l i i s i i= × , where ( )1 2,i i  stands for pixel coordinates and ( )1 2,x i i  stands for 
the intensity value at ( )1 2,i i . By taking the log of ( )1 2,x i i  we obtain: 
 
                                  ( ) ( ) ( )1 2 1 2 1 2log , log , log ,x i i l i i s i i= +                                    (1) 
 
With the slight abuse of notation we rewrite (1) on the matrix level as: 
 
                                   = + +X L S G                                                                               (2) 
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where, in relation to Eq.(1), the AWGN term G with zero mean and unknown variance σ2 has been 
added. We provide the same justification of the model (2) as in [14]. Due to the random nature of 
the scattering, the speckle associated with the matrix S has sparse spatial distribution. Thus, the 
matrix L represents enhanced OCT image that contains information on tissue microstructure. 
Hence, it is justified to assume that L is low-rank approximation of X [32, 33]. Thus, reduction of 
the speckle within the OCT image can be seen as decomposition of the empirical data matrix (OCT 
image) X into low-rank matrix L and sparse matrix S. Herein, by introducing the group sparsity 
constraint we want the noise related speckle to be absorbed even more in the sparse matrix S.  
 

 
Figure 1. (a) to (c): flow chart of the "low-rank + group sparsity" decomposition approach to speckle 
reduction in optical coherence tomography (OCT) images. Information on image quality metrics such as 
contrast-to-noise ratio (CNR), signal-to-noise ratio (SNR) in dB, contrast and sharpness, can be found in 
Sec. 2.2. (a) original OCT image: CNR = 3.61, SNR = 12.51, contrast = 1.14, sharpness = 56.90. (b) 
ELRpGSD-based approximation of OCT image: CNR=4.22, SNR=13.71, contrast=1.47, sharpness=61.49. 
(c) Sparse term containing speckle. (d) ELRpSD-based approximation of OCT image: CNR = 4.18, SNR = 
13.85, contrast = 1.45, sharpness = 61.06. (e) OCT image enhanced by the GoDec algorithm (rank=35):19 
CNR = 4.59, SNR = 6.43, contrast = 1.71, sharpness = 49.01. (f) OCT image enhanced by bilateral filtering: 
CNR = 4.19, SNR = 10.58, contrast = 1.65, sharpness = 59.79. (g) OCT image enhanced by median filtering: 
CNR = 9.09, SNR = 6.08, contrast = 1.97, sharpness = 37.79. For visual comparison OCT images (a) to (g) 
were mapped to [0 1] interval with the MATLAB mat2gray command from the interval corresponding to 
minimal and maximal values of each specific case. The best value for each figure of merit is in bold. 
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2.1 Enhanced low-rank and group sparsity regularized additive decomposition 
 
Estimation of the low-rank matrix L and sparse matrix S is expressed as the following optimization 
problem: 

                                           
 

0,
min ( )rank subject toλ + τ = + +

L S
L S X L S G                           (3) 

 
Here, 

0
S  stands for 0  pseudo-norm that counts the number of nonzero entries of S while λ and τ 

are nonnegative tuning parameters. Rank minimization problem is NP-hard. Minimization of the 
number of nonzero entries is NP-hard problem as well. Thus, optimization problem (3) is often 
replaced by convex relaxation [17, 20]:  

 
           

                 
1,

min ( )i
i

subject toλ σ + τ = + +∑L S
L S X L S G          (4)                        

 

The first term is the 1 -norm of the vector ( ) 1 2min( , )
0

I I
+∈σ L   of singular values of L, and it is known 

as the nuclear- or Schatten-1 norm of L [24, 25]. It represents convex relaxation of the rank 

minimization problem [21]. The second term is the 1 -norm of the matrix S and it represents 

convex relaxation of the 
0

S  minimization problem [34]. Because nuclear norm is not accurate 

measure of rank non-convex regularization that promotes more sparse approximation of singular 

values was used for rank approximation in [14] converting (4) into the following optimization 

problem: 

                         
( ) ( )2

1, 1

1min , ( );
2

k

iF
i

a
=

 Ψ = − − + λ φ σ + τ 
 

∑L S
L S X L S L S     (5) 

 
where function φ is the partly quadratic penalty function such that for parameter 0≤a<1/λ the 
resulting low-rank optimization subproblem of (5) is convex [26]. In order to collect the noise 
related speckle more efficiently we additionally introduce 2 -norm regularization for S: 
 

                         
( ) ( )2

1 2, 1

1min , ( );
2

k

iF
i

a
=

 Ψ = − − + λ φ σ + τ + γ 
 

∑L S
L S X L S L S S          (6) 

 
This type of regularization is in sparse regression known as elastic net and it is used for grouping 
features that belong to the same category [30]. Optimization problem (6) can be split into two sub-
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problems: the rank minimization problem when S is fixed and the group sparsity minimization 
problem when L is fixed. Thus, we need to find proximity operators of ( )( );i aφ σ L  and 

of
1 2

τ + γS S . The proximity operator of ( )( );i aφ σ L  :θ →  defined as: 
 

             ( ) ( ) ( )21; , : arg min ;
2x

y a y x x a
∈

 θ λ = − +λφ 
 

                   (7) 

 
 was shown to be the firm threshold function [26]: 
 

 
       ( ) ( ) ( )( ){ } ( ); , : min ,max / 1 ,0y a y y a sign yθ λ = −λ − λ             (8) 

 
In case of matrix X, notation ( ); , aθ λX  implies that the proximal operator is applied element-wise 
to X. Proximity operator of the sparsity related term in (6) amounts to computing proximity 
operator of the sum of regularizing functions. Let us denote: 
 
                               ( ) 1

g =S S , ( ) 2
h =S S                                                              (9) 

 
 Let us define the proximity operator Pg(Y): 

 

( ) ( ) ( )
1 2

21: arg min
2I IgP g

×∈

 = − + τ 
 X

Y X Y X


               (10) 

 
Pg(Y) admits analytical solution in a form of the soft thresholding function [35]: 
 

                        ( ) ( ) ( ) ( )max ,0gP S signτ= = − τY Y Y Y                                       (11) 
 
such that the soft threshodling operation is applied on Y entry wise. In general the proximity 
operator ( )g hP + Y  does not have analytical solution, i.e. ( ) ( ) ( )g h g hP P P+ ≠ +Y Y Y  [31, 36]. 
However, for g(S) and h(S) given by (9) it is shown that [31]: 
 
                                   ( ) ( ) ( )1g hP S+γ τ +γ=Y Y                                                            (12) 
 

In other words, an extra 2  regularizer tends to double "shrink" the solution [31]. Thus, the 

optimization problem (6) can be replaced by an equivalent optimization problem: 
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( ) ( )2

1 1, 1

1min , ( );
2

k

iF
i

a τ
+γ

=

 Ψ = − − + λ φ σ + 
 

∑L S
L S X L S L S   (13) 

 
We derive algorithm for optimization problem (13) using alternating direction method of 
multipliers (ADMM) [37]. Thus, we formulate the augmented Lagrangian [38] for problem (13): 
 

        ( ) ( ) 2
1 1

1
, , ( ); ,

2

k

i F
i

L a τ
+γ

=

µ
= λ φ σ + + − − + − −∑L S Λ L S Λ X L S X L S                    (14) 

 
The rank minimization problem, when S is fixed, yields: 
 

                

( )

( )

( )

1 1 1

21
1 1

1
2

1 1
1

1 1

arg min , , ,

arg min ( ); ,
2

arg min ( );
2

t t t t

k
t

i t t F
i

k
t t

i t
i t F

L

a

a

− − −

−
− −

=

− −
−

= −

= µ

µ
= λ φ σ + − − + − −

µ
= λ φ σ + − − +

µ

∑

∑

L

L

L

L L S Λ

L Λ X L S X S L

ΛL X S L

               (15)
 

 
where t denotes iteration index. Let UΣVT denotes singular value decomposition (SVD) of: 
          

           1
1

1

T t
t

t

SVD −
−

−

 
= − + µ 

ΛUΣV X S                                                (16) 

 
Applying (7) and (8) to (15) yields solution for low-rank matrix L at iteration t: 
 
             
        ( )1; / , T

t t a−= θ λ µL U Σ V                                                         (17) 
 
Sparseness minimization problem, when L is fixed, yields: 
 
 

              

( )1 1

21
1 1

2

1 1
1 1

1

arg min , , ,

arg min ,
2

arg min
2

t t t t

t
t t F

t t
t

t F

L − −

−τ
+γ

− −τ
+γ

−

= µ

µ
= + − − + − −

µ
= + − − +

µ

S

S

S

S L S Λ

S Λ X L S X L S

ΛS X L S

                                     (18) 

 
 
Applying (10) and (11) to (18) yields solution for sparse matrix S at iteration t: 
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(1 ) 1

1

1t

t
t t

t

S τ
+γ µ −

−

−

 
= − + µ 

ΛS X L                                                                        (19) 

 
Matrix of Lagrange multipliers at iteration t is updated according to: 
 
               ( )1 1t t t t t− −= +µ − −Λ Λ X L S                                                                 (20) 
 
and penalization parameter is updated according to: 
 
   { }max

1max ,t t−µ = ρµ µ                                                                               (21) 
 
where ρ stands for adaptation rate and maxµ is the maximal value of the penalization parameter. In 
our experiments, however, we found out that algorithms converges for µt=1. The algorithm is 
stopped when either predefined number of iterations is reached or when root mean square error 
(RMSE) is bellow some predefined threshold ε: 
 
                         

2t t− − ≤εX L S                                                                                     (22) 
 
We demonstrate numerically convergence of proposed ELRpGSD algorithm in Fig. 2. The 
ELRpSGD algorithm is summarized in Algorithm 1.   
 
 

 
Figure 2. Convergence  in term of the RMSE (22) as a function of the iteration index of the ELRpGSD 
algorithm for γ=0.4, τ=0.1, λ=5 and µ=1. 
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Algorithm 1. The ELRpGSD algorithm. 

Input: logarithm of acquired OCT image 1 2I I×∈X  with the size of I1×I2 pixels, regularization 
constants λ, τ and γ related respectively to enhanced low-rank OCT image L and speckle term S in 
(13)/(14), RMSE threshold ε in (22).  Suggested values: λ=5, τ=0.1, γ=0.4. Suggested value for the 
adaptive penalty parameter µ in (8)-(15): µ=1. Suggested value for stopping criterion in (22): 
ε=0.1.  

1. L(0) = 0; S(0) = 0; Λ(0) = 0; t=1. 
2. while not converged do 
3. Execute SVD (16). 
4. Update L using (17). 
5. Update S using (19). 
6. Update Λ using (20). 
7. 1t t← +  
8. end while 
Output: ( 1) ( 1),t t+ +← ←L L S S . 

 
 

3 EXPERIMENTS AND RESULTS 
 
3.1 Performance measure 
 
To quantify the performance of speckle reduction algorithms, appropriate measures have to be 
defined. We use the same no-reference OCT image quality metrics as in [14]. In order to have the 
current paper self-contained we repeat their description as in Sec. 2.3 in [14]. In the case of OCT 
image, the most commonly used figure of merit is CNR [1, 2]. It corresponds to the inverse of the 
speckle fluctuation and it is defined as: ( ) / ( )l lCNR = µ σX X  where ( )lµ X  and ( )lσ X  respectively 
correspond to the mean and standard deviation in some selected homogeneous part of the image X. 
Experimental results reported in Sec. 3 were estimated in the region that corresponds with the top 
most layer in the OCT image of a retina, which is indicated in Figure1 by red arrow [9]. Since the 
goal of post-processing algorithms is not only to reduce speckle but also to preserve image 
resolution, contrast and edge fidelity [1], we also estimate contrast, sharpness as well as SNR 
measures directly from the image. Sharpness is the attribute related to the preservation of fine 
details (edges) in an image. Contrast is defined as the ratio of the maximum and the minimum 
intensity of the entire image [39]. It reflects the strength of the noise or modeling error term G. Up 
to some extent it can be considered as an image quality measure that coincides with the SNR 
quality measure. Technical details on estimation of sharpness and contrast can be found in the [39, 
14]. We estimated sharpness in the entire retinal region from the first (top most) to the tenth 
(bottom most) layer. Contrast was estimated from the whole image. By following [13], global SNR 
value was estimated as ( )2 210 log max lin linSNR  = σ X , where Xlin is the OCT image on a linear 

intensity scale and 2
linσ , such that the noise variance was estimated on a region between top of the 

image and the top most layer. 
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3.2 Algorithms for comparison and OCT image acquisition 
We compare the proposed ELRpGSD algorithm with: the ELRpSD algorithm [14], the 2D bilateral 
filtering algorithm and 2D median filtering algorithm. It has been shown in [14] that ELRpSD 
algorithm yields comparable or better performance than other algorithms that are based on additive 
low-rank and sparse decompositions such as GoDec [19] and SSGoDec [19] and the rank N soft 
constraint (RNSC) for RPCA algorithm [40]. The advantage of the ELRpGSD and the ELRpSD 
algorithms in comparison with GoDec, SSGoDec and RNSC algorithms is that later group demands 
a priori information on the rank and that requires tuning. That is why ELRpSD algorithm was 
selected to represent additive decomposition based OCT image enhancement methods. The 
MATLAB code for the 2D bilateral filtering algorithm has been downloaded from [41]. For 2D 
median filtering the MATLAB function median2 has been used. The speckle reduction algorithms 
were comparatively tested on 10 3D macular-centered OCT images of normal eyes acquired with 
the Topcon 3D OCT-1000 scanner. Each 3D OCT image was comprised of 64 2D scans with the 
size of 480×512 pixels. These images have been used previously for the study for optical intensity 
analysis in [42], where they were segmented into 10 retina layers. We estimated CNR-, SNR-, 
contrast- and sharpness values from the original image as well as from the images with reduced 
speckle. The images were analyzed with software written in the MATLAB (the MathWorks Inc., 
Natick, MA) script language on PC with Intel i7 CPU with the clock speed of 2.2 GHz and 16GB 
of RAM.  
 

3.3 Comparative results 
We present the results of the comparative performance analysis between the ELRpGSD, ELRpSD, 
2D bilateral filtering and 2D median filtering algorithms. Parameters of bilateral filter have been 
tuned to yield approximately the same CNR value (the same level of speckle reduction) as the 
ELRpSD algorithm [14]. The median filtering has been used with the window of the size 3×3 
pixels. The algorithms were applied to each 2D OCT scan separately. CNR, SNR, contrast and 
sharpness were estimated from each enhanced 2D scan and the reported values were averaged over 
64 scans for each 3D OCT image. Afterwards, they were averaged further over 10 3D OCT images. 
Average computation time of the ELRpGSD, ELRpSD, 2D bilateral filtering and 2D median 
filtering algorithms is per one 2D OCT scan respectively given as: 6.05s, 9.79s, 18.98s and 0.05s. 
Means and standard deviations averaged over 10 3D OCT images are presented in Table 1 for 
relative values of CNR, sharpness, contrast and SNR. Means and standard deviations of relative 
values are defined as in [14]. We provide information for relative SNR value as an example: 

 
 

 
[ ]Relative_mean_SNR %

mean(SNR_of_enhanced image)-mean(SNR_of_original_image)100*
mean(SNR_of_original_image)

=

                  
    (23) 
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[ ]Relative_standard_deviation_SNR %

std(SNR_of_enhanced image-SNR_of_original_image)100*
mean(SNR_of_original_image)

=
           (24) 

 
Relative values of CNR, contrast and sharpness were defined analogously. As can be seen from 
Table 1, ELRpGSD method is capable to further improve CNR value comparable with the 
ELRpSD method. In addition to that it also improves contrast with the mild decrease of sharpness 
and SNR. Bilateral and median filtering decrease SNR relative to the original OCT images, while 
median filtering also has negative relative value of sharpness. Thus, we further compare the 
ELRpGSD and ELRpSD algorithms in Figs. 3 to 6. Please note that the ELRpSD method follows 
as a special case of the ELRpGSD method when 2 -norm regularization term is set γ=0, see Eq.(6) 
and 813). Figs. 3 to 6 show in respective order averaged values of absolute CNR, relative contrast, 
relative sharpness and relative SNR estimated from 10 3D OCT images. It can be seen that by 
increase of the regularization constant γ, CNR and contrast values are increased, while sharpness 
and SNR values are mildly decreased. Hence, depending on the relative importance of the each 
image quality metric the group sparsity regularization can bring additional improvement of the 
quality of OCT images. Fig. 7 shows relative values of all four metrics for each of 10 3D OCT 
images enhanced by the ELRpGSD algorithm with γ=0.4. 
   
Table 1. Means and standard deviations of relative values of CNR, sharpness, contrast and SNR, 
(in percentage) averaged over 10 3D OCT images.  
 

 CNR Sharpness Contrast SNR 
ELRpGSD, 

γ=0.4 
13.39 
± 4.16 

14.30 
± 2.70 

27.02 
± 1.71 

5.67 
± 6.80 

ELRpGSD, 
γ=0.8 

13.95 
± 4.36 

13.68 
± 2.78 

27.77 
± 13.68 

5.26 
± 6.71 

ELRpSD 12.02 
± 3.80 

14.62 
± 2.5 

24.54 
± 1.56 

6.49 
± 6.90 

Bilateral 

filtering 

13.15 
± 3.50 

4.42 
± 6.89 

41.71 
± 3.19 

-10.18 
± 2.38 

Median 

filtering 

151.9 
± 21.98 

-30.35 
± 2.64 

71.58 
± 2.23 

-59.95 
± 9.19 
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Figure 3. Average of absolute CNR values estimated from 10 3D OCT images: diamonds - original 
images; circles - images enhanced with the ELRpSD method; squares - images enhanced with the 
ELRpGSD method as a function of regularization constant γ, see Eq.(6) and (13).    

 
 

 

 
Figure 4. Average of relative contrast values (in percentage) estimated from 10 3D OCT images 
enhanced with: circles - the ELRpSD method; squares - the ELRpGSD method as a function of 
regularization constant γ, see Eq.(6) and (13).   
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Figure 5. Average of relative sharpness values (in percentage) estimated from 10 3D OCT images 
enhanced with: circles - the ELRpSD method; squares - the ELRpGSD method as a function of 
regularization constant γ, see Eq.(6) and (13).   
 

 

 
Figure 6. Average of relative SNR values (in percentage) estimated from 10 3D OCT images 
enhanced with: circles - the ELRpSD method; squares - the ELRpGSD method as a function of 
regularization constant γ, see Eq.(6) and (13).   
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Figure 7. Relative values of image quality metrics for each of 10 3D OCT images enhanced with 
the ELRpGSD algorithm with γ=0.4. Squares: CNR; stars: sharpness; circles: contrast; diamonds: 
SNR.   
 

 
4 DISCUSSION  

Speckle stands for major obstacle in quantitative OCT image analysis. Due to its dual role as a 
source of noise and as a carrier of information about tissue microstructure its complete reduction is 
not desirable. Thus, it is a challenge to increase the CNR value, which is used as a figure of merit in 
speckle reduction, and preserve image resolution, contrast and fidelity of edges. We have proposed 
approach to speckle reduction which is based on decomposition of 2D OCT scans into low-rank 
approximation of the "clean" image and group sparse term which takes into account speckle. In 
comparison with our previous contribution [14], the new algorithm relies on group sparsity based 
regularization instead of sparsity only. Group sparisty constraint enforces more speckle from the 
noise related group to be absorbed by the sparse matrix in additive low-rank plus sparse 
decomposition of 2D OCT image. Hence, proposed method yields better low-rank approximation 
of the original OCT images with simultaneously increased values of CNR, sharpness, contrast and 
SNR. Moreover, increase of the value of CNR and contrast can be controlled by the value of group 
sparsity regularization constant. Thus, depending on the relative importance of the each image 
quality metric the group sparsity regularization can bring additional improvement of the quality of 
OCT images. 
 
 

5 CONCLUSIONS  
We have developed a method for additive low-rank and sparse matrix decomposition and applied it 
for the speckle reduction in OCT images. In comparison with state-of-the-art low-rank and sparse 
decomposition methods proposed method uses more accurate measure of rank and group sparsity 
constraint implemented through combination of 1 - and 2 -norm of the sparse term in additive 
decomposition. Thus, the method is named the ELRpGSD algorithm. The method, which is applied 
on individual 2D OCT scans, was tested on 10 3D OCT images comprised of 64 scans each. It was 
able to simultaneously increase, relative to the original OCT images, values of CNR, contrast and 
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sharpness (improved fidelity of edges) and SNR. Furthermore, by the regularization constant 
associated with the 2 -norm of the sparse term values of CNR and contrast of enhanced image can 
be increased relatively to the values of original images. 
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