Pregled bibliografske jedinice broj: 1053636
Tracking handball players with the DeepSORT algorithm
Tracking handball players with the DeepSORT algorithm // Proceedings of the 9th International Conference on Pattern Recognition Applications and Methods - ICPRAM 2020 / De Marsico, Maria ; Sanniti di Baja, Gabriella ; Fred, Ana (ur.).
Valletta, Malta: SCITEPRESS, 2020. str. 593-599 (poster, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1053636 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Tracking handball players with the DeepSORT
algorithm
Autori
Host, Kristina ; Ivašić-Kos, Marina ; Pobar, Miran
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of the 9th International Conference on Pattern Recognition Applications and Methods - ICPRAM 2020
/ De Marsico, Maria ; Sanniti di Baja, Gabriella ; Fred, Ana - : SCITEPRESS, 2020, 593-599
ISBN
978-989-758-397-1
Skup
9th International Conference on Pattern Recognition Applications and Methods (ICPRAM 2020)
Mjesto i datum
Valletta, Malta, 22.02.2020. - 24.02.2020
Vrsta sudjelovanja
Poster
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Object detection ; YOLO ; Sport ; Handball ; Tracking ; DeepSORT
Sažetak
In team sports scenes, such as in handball, it is common to have many players on the field performing different actions according to the rules of the game. During practice, each player has their own ball, and sequentially repeats a particular technique in order to adopt it and use it. In this paper, the focus is to detect and track all players on the handball court, so that the performance of a particular athlete, and the adoption of a particular technique can be analyzed. This is a very demanding task of multiple object tracking because players move fast, often change direction, and are often occluded or out of the camera field view. We propose a DeepSort algorithm for player tracking after the players have been detected with YOLOv3 object detector. The effectiveness of the proposed methods is evaluated on a custom set of handball scenes using standard multiple object tracking metrics. Also, common detection problems that have been observed are discussed.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo, Informacijske i komunikacijske znanosti
POVEZANOST RADA
Projekti:
HRZZ-IP-2016-06-8345 - Automatsko raspoznavanje akcija i aktivnosti u multimedijalnom sadržaju iz domene sporta (RAASS) (Ivašić Kos, Marina, HRZZ - 2016-06) ( CroRIS)
NadSve-Sveučilište u Rijeci-uniri-drustv-18-222 - Automatsko raspoznavanje sportskih tehnika kod mladih sportaša i rekreativaca u svrhu usvajanja motoričkih vještina i usavršavanje stila (Ivašić Kos, Marina, NadSve - Natječaj za dodjelu sredstava potpore znanstvenim istraživanjima na Sveučilištu u Rijeci za 2018. godinu - projekti iskusnih znanstvenika i umjetnika) ( CroRIS)
Ustanove:
Fakultet informatike i digitalnih tehnologija, Rijeka
Citiraj ovu publikaciju:
Časopis indeksira:
- Scopus