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A note on symmetric orderings

Zoran Skoda

Abstract

Let A, be the completion by the degree of a differential operator of
the n-th Weyl algebra with generators z1,...,zy, 0',...,0™. Consider
n elements Xq,...,X, in A, of the form

n n

—%+ZZZ$1PK M),

K=11=1 j=1

where pK L 1(8) is a degree (K —1) homogeneous polynomial in %, ..., 9",
antlsymmetric in subscripts 4, j. Then for any natural k£ and any function
i {1,...,k} = {1,...,n} we prove

E : Xigay  XKiggy 21 = klag, -z,
oceX(k)

where X(k) is the symmetric group on £ letters and > denotes the Fock
action of the A, on the space of (commutative) polynomials.
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1 Introduction and motivation

In an earlier article [3], we derived a universal formula for an embedding
of the universal enveloping algebra U(g) of any Lie algebra g with under-
lying rank n free module over a commutative ring k containing the field
Q of rational numbers into a completion flnk of the n-th Weyl algebra
over k.
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Definition 1. The n-th Weyl algebra A, over a commutative ring k is
the associative k-algebra defined by generators and relations as follows:

An,k = k<xla .. -7ITL7817 < -7an>/<[xi7xj]7 [ai78j]7 [ZBZ,GJ]—(SZ, i,j7 = 17 .. .,71,>.

We use the “contravariant” notation for the generators of A,  ([7}
1.1]) and 6; is the Kronecker symbol. The reader should recall the usual
interpretation of the Weyl algebra elements as regular differential oper-
ators [2, B]. In other words, the elements of A, p act on the polyno-
mial algebra k[z1,...,z,], consisting of commutative polynomials via
the physicists’ Fock action here denoted by >: A,k @ k[z1,...,2,] —
k[z1,...,2,]. By definition, generators z; act as the multiplication op-
erators by x; and 07 act as partial derivatives. The unit polynomial
1 € k[x1,...,z,] is interpreted as the vacuum state.

Complete A, & along the filtration given by the degree of differential
operator ([3 7,18]); the completion will be denoted A,, g. Thus, the ele-
ments in An & can be represented as arbitrary power series in 9',. .., 0"
with coefficients (say on the left) in the polynomial ring k[z1,. . xn}

For a fixed basis X7,..., X8 of g, denote by C’fj € k for Lj,k €

n

{1,...,n} the structure constants defined by
[X?, X9 = Zcfjx,g. (1)

Constants C’,kj are antisymmetric in lower indices and satisfy a quadratic
relation reflecting the Jacobi identity in g. According to [3], there is
a unique monomorphism of k-algebras v: U(g) — A, extending the
formulas

g 1)N N
X8 (X9 lez N (MY (2)

where By is the n-th Bernoulli number and C is an n X n matrix with

values in k, defined by
n
C;=> Co".
k=1

The monomorphism ¢ does not depend on the choice of the basis; over R
and C the formula appeared to be known much before ([Il [5]) and,
suitably interpreted, corresponds to the Gutt’s star product [4]. A simple
differential geometric derivation of the formula over R is explained in
detail in [7, Section 1.2.]. Similarly, Sections 7-9 of [3] provide a geomet-
rical derivation in formal geometry over any ring containing rationals.
See also [6] for another point of view. Expression is related to the
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part of Campbell-Baker-Hausdorff series linear in the first argument ([3]
Sections 7-9]). Denote by

1
el k[zy,...,xy) =2 U(8), Zay: Tay M o Z X8 - X8 (3)
T oex(k)

the standard symmetrization (or coexponential) map (of vector spaces),
where the symmetric group on k letters is denoted X(k). Via monomor-
phism ¢, the expression on the right-hand side of (3) can be interpreted
in A, k- 1f we apply the resulting element of A, & on 1 using (the formal
completlon of) the Fock action, we recover back the left-hand side of (3.
In other words ([3, §]),

(Loe®)(@)>1=gq, q€klri,... ], (4)

where > denotes the Fock action by differential operators.
In this paper, it is proven that already the tensorial form,

Xy X = il’l i An(CM);, (5)
N=0

=1

of the universal formula , with A; = 1, guarantees in characteristic 0
that precisely the symmetrically ordered noncommutative expressions

Z X%m ’ %w)’

: UGE(k)

interpreted via the embedding , and after acting upon the vacuum,
recover back the commutative product z,, - - - o, . The coefficients Ay
in (5)) may be arbitrary for N > 0 and A; = 1, instead of the choice Ay =
(71\1,)! By for all N, and X; may be generators of an arbitrary finitely
generated associative k-algebra U, instead of the motivating choice X; =
XPeU(g).

Even more generally, we may replace Ax(CM)! in . ) by any
expression of the form pN 11(81 .,0™)d7 provided that pf\; L=

pfj L l(f)l, ...,0") is a homogeneous polynomial of degree (N — 1) in
0',...,0", antisymmetric under interchange of i and j. Note that the
previous case involving U(g) may be recovered by setting

-1, (_1)NBN - — s
PZ b= N Z(CN 1)lsCij'
: s=1

We do not discuss when the correspondence (5 (or its generalization
involving pg_l’l) extends to a homomorphism U — A,, i, of algebras (in
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physics literature also called a realization of U). If U is tautologically de-
fined as the subalgebra of An % generated by the expressions X; € An k
we alert the reader that the corresponding PBW type theorem often fails
and the dimension of the space of degree k > 1 noncommutative polyno-
mials in X; generically exceeds the dimension of the space of symmetric
polynomials of degree k.

In the rest of the article below, X;-s are defined as elements in fln,k
from the start, hence we proceed without a distinction between X; and
X;.

2 Results

Theorem 2. Assume k is a field of characteristic different from 2. Let

n

—JIZJFZIEIZZPN ” o,..., oM, i=1,...,n, (6)

=1 N=1j=1

be n distinguished elements of /Aln_,k, where pgfl’l(al, ..., 0") are arbi-
trary homogeneous polynomials of degree (N — 1) in 0',...,0", anti-
symmetric in lower indices i,j. Let a: {1,...,k} — {1,...,n} be any

function. Then, in the index notation, a; = a(i),

Z Xogiy Xapgy 21 =Ko, Ta,.- (7)
oex(k)

Proof. We prove the theorem by induction on degree k. For k = 1 all
terms with N > 1 vanish, because we apply at least one derivative to 1.

For general k, we write the sum (7)) over all permutations in (k) in a
different way. We use the fact that the set of permutations of k elements
Y (k) is in the bijection with the set of pairs (i, p) where 0 < ¢ < k and
p € X(k —1). This can be done in many ways, but we use this concrete
simple-minded bijection

i, k=1,
(t,p) =0, olk):=¢ pk—1), k>1and p(k—1) <i,
plk—1)+1, k>1and p(k—1)>1.

For example, (3,(2,3,1,5,4)) — (3,2,4,1,6,5).
Define a bijection ©;: {1,....k—1} = {1,...;i—1,i+1,...,k} by

(A7) — J? .7<Z7
@Z(])'_{ RS
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Clearly now o(j + 1) = 0;(p(j)) for 1 < j < k.
We may thus renumber the sum

Z X%(2> ’ ao(k)

oceX(k)
as the double sum
Y Xat) Y, Koo)X (a0 (p(h-1))
i= pES(k—1)

By the assumption of induction,

D X(aoo) () X(aoe,)(pk—1)) > 1
pES(k—1)

= (k= D)!'T(000,)(1) " T(a00:) (k1)

The function ©; takes all values between 1 and k except i exactly once.
Therefore, the left-hand side of (7) may be rewritten as

k—1)! ZXa( S Ta(i—1)Ta(itl) " Ta(k))- (8)

Substituting the expression @ for X, in we immediately observe
two summands. Let 0 be the Kronecker symbol. Then the first summand
is

n

k
DUy Y 200y (Ta() - Tal-1)Tait1) - Tatk) = K Ta() - Tagk)s

i=1r=1

yielding the desired right-hand side for . Hence for the step of induc-
tion on k it is sufficient to show that the remaining summand

k ) n
(k=D DD @D a0 (@a()  Tali-1)Ta(i+1) - Ta(k)

vanishes. This follows if for any N > 0 the contribution

Z prxv( )18zas (1) " Ta@i—1)Ta(i+1) ** Ta(k)) = 0. (9)

1=1 s=1
Let s {l,...,n}and M(s) ={j € {l,...,i—1,i+1,...,k}s=a())}.
By elementary application of partial derivatives,

O*(Ta(1) Ta(i=1)Ta(itl) " Ta(k)) = Z H To(r)-

JEM(s) re{l,..k}\{i.j}
(10)
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In particular, the contributions from s ¢ {a(1),...,a(i—1),a(i+1),...,
a(k)}, that is for M (s) = 0, vanish and 9% (4 (1) - - Za(i—1)Ta(i+1) = * Ta(k))
= 0.

Thus, for fixed i, the overall sum over all s € {1,...,n} becomes a
new sum over all j € {1,...,4—1,i+1,...,k} and each j # i appears
precisely once, namely for s= a( ) For ﬁxed pair (i, s), notice that the
summands do not depend on j € M(s), but we do not use this fact. By

antisymmetry, a(z)lal(l) O if chark # 2, hence we are free to add any

terms multiplied by p ( )a (l) For fixed i, we conclude
Zpa(z )s xa(l) CTa(i-1)La(i+1) " xoz(k))

Z )a(J) H La(r):

j=1 re{l,...k}\{i,5}

Regarding that Hre{l,‘..,k}\{i,j} To(r) is a symmetric tensor in 4, j, and

g( )zéj) is antisymmetric under exchange of ¢ and j, their contraction

o~

must be zero,

k k
z; ;pg@zéj) II zn=o
=1 9=

re{l,...k}\{:,7}
Therefore, @D follows, and consequently the step of induction on k. [J

The reader may want to understand the reindexing and cancellation
arguments following formula on an example where « is not injective.
Supposen = 3,k =4, and a sends 1,2,3,4 to 1, 3, 3, 2 respectively. Then

Z?Zl Zi:l paN(Z 1Sl85 <HT¢1— J}a(r)) has contributions as follows: for7 = 1
! 1

one obtains Y pi 0% (w3wsxe) = phy Vlasws+2py
and i = 3 equal contributions ) pé\;717185(m1x3x2) = p?])\gfl’lxgxg +

329, for i = 2

pé\g_l Lyizs —l—pg]’\g_l’lmlmg, and for i = 4 one obtains ) péi_l’l@s(xlxgxg)
= pé\g 1 lm3x3—|—2p§g_1’lm1x3. By the antisymmetry of pV ~1!, the double

sum is 0.

Corollary 3. Under the assumptions of Theorem [3, there is a well-
defined k-linear map

e: k)[l’l,. .. ,Cﬂn} — An,k
extending the formulas
T Z Xacr(l) ' ao(k)’ (11)
oceX(k)
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forallk > 0 and for all (nonstrictly) monotone a: {1,...,k} — {1,...,n}.
Map € satisfies
é(Pk)Dl :kj!Pk (12)

for all (commutative) polynomials Py = Pi(Tay,---,Tqa, ) homogeneous
of degree k. In particular, € is injective iff chark = 0. In that case, the
elements e(zq, -+ X, ) are linearly independent. If chark = 0, a modi-
fied map e: k[xq,...,x,] = Ank with normalization on k-homogeneous
elements given by

1
e: .’I;al "'.'L'ak — E g Xagu) "'Xa(,(k)? (13)
" oex(k)

18 an injection.

The map € is well-defined because the right-hand side in is sym-
metric in ag,...,0,. Formula can be restated as é(—) > 1 = k!id.
Note that the expressions do not span an associative subalgebra, but
only a subspace e(k[z1,...,xy]) of the subalgebra k(X1, ..., X,,) of /ln,k
generated by Xi,...,X,, in general. Denote by 7: k(X1,...,X,) —
k[z1,...,x,] the vector space projection given by the Fock action on the
vacuum vector 1 € k[x1,...,z,], thatism(P) = P>l, P € k(Xq,..., X,,).
If char k = 0, the map e can be viewed as a k-linear section of the pro-
jection map 7. In particular, e is an isomorphism onto its own image
and Ker 7 @ Im e = k(X1,..., X,).
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