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A note on symmetric orderings

Zoran Škoda

Abstract

Let Ân be the completion by the degree of a differential operator of
the n-th Weyl algebra with generators x1, . . . , xn, ∂

1, . . . , ∂n. Consider
n elements X1, . . . , Xn in Ân of the form

Xi = xi +

∞∑
K=1

n∑
l=1

n∑
j=1

xlp
K−1,l
ij (∂)∂j ,

where pK−1,l
ij (∂) is a degree (K−1) homogeneous polynomial in ∂1, . . . , ∂n,

antisymmetric in subscripts i, j. Then for any natural k and any function
i : {1, . . . , k} → {1, . . . , n} we prove∑

σ∈Σ(k)

Xiσ(1)
· · ·Xiσ(k)

. 1 = k!xi1 · · ·xik ,

where Σ(k) is the symmetric group on k letters and . denotes the Fock
action of the Ân on the space of (commutative) polynomials.

Keywords: Weyl algebra, symmetric ordering

2010 Math. Subj. Class.: 16S30,16S32

1 Introduction and motivation

In an earlier article [3], we derived a universal formula for an embedding
of the universal enveloping algebra U(g) of any Lie algebra g with under-
lying rank n free module over a commutative ring k containing the field
Q of rational numbers into a completion Ân,k of the n-th Weyl algebra
over k.
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Definition 1. The n-th Weyl algebra An,k over a commutative ring k is
the associative k-algebra defined by generators and relations as follows:

An,k := k〈x1, . . . , xn, ∂1, . . . , ∂n〉/〈[xi, xj ], [∂i, ∂j ], [xi, ∂
j ]−δji , i, j,= 1, . . . , n〉.

We use the “contravariant” notation for the generators of An,k ([7,
1.1]) and δij is the Kronecker symbol. The reader should recall the usual
interpretation of the Weyl algebra elements as regular differential oper-
ators [2, 3]. In other words, the elements of An,k act on the polyno-
mial algebra k[x1, . . . , xn], consisting of commutative polynomials via
the physicists’ Fock action here denoted by . : An,k ⊗ k[x1, . . . , xn] →
k[x1, . . . , xn]. By definition, generators xi act as the multiplication op-
erators by xi and ∂j act as partial derivatives. The unit polynomial
1 ∈ k[x1, . . . , xn] is interpreted as the vacuum state.

Complete An,k along the filtration given by the degree of differential

operator ([3, 7, 8]); the completion will be denoted Ân,k. Thus, the ele-

ments in Ân,k can be represented as arbitrary power series in ∂1, . . . , ∂n

with coefficients (say on the left) in the polynomial ring k[x1, . . . , xn].

For a fixed basis Xg
1 , . . . , X

g
n of g, denote by Ckij ∈ k for i, j, k ∈

{1, . . . , n} the structure constants defined by

[Xg
i , X

g
j ] =

n∑
k=1

CkijX
g
k . (1)

Constants Ckij are antisymmetric in lower indices and satisfy a quadratic
relation reflecting the Jacobi identity in g. According to [3], there is
a unique monomorphism of k-algebras ι : U(g) → Ân,k extending the
formulas

Xg
i 7→ ι(Xg

i ) =

n∑
l=1

xl

∞∑
N=0

(−1)N

N !
BN (CN )li, (2)

where BN is the n-th Bernoulli number and C is an n × n matrix with
values in k, defined by

Cij =

n∑
k=1

Cijk∂
k.

The monomorphism ι does not depend on the choice of the basis; over R
and C the formula (2) appeared to be known much before ([1, 5]) and,
suitably interpreted, corresponds to the Gutt’s star product [4]. A simple
differential geometric derivation of the formula (2) over R is explained in
detail in [7, Section 1.2.]. Similarly, Sections 7–9 of [3] provide a geomet-
rical derivation in formal geometry over any ring containing rationals.
See also [6] for another point of view. Expression (2) is related to the
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part of Campbell-Baker-Hausdorff series linear in the first argument ([3,
Sections 7–9]). Denote by

eg : k[x1, . . . , xn]→ U(g), xα1
· · ·xαk 7→

1

k!

∑
σ∈Σ(k)

Xg
ασ1
· · ·Xg

ασk
(3)

the standard symmetrization (or coexponential) map (of vector spaces),
where the symmetric group on k letters is denoted Σ(k). Via monomor-
phism ι, the expression on the right-hand side of (3) can be interpreted
in Ân,k. If we apply the resulting element of Ân,k on 1 using (the formal
completion of) the Fock action, we recover back the left-hand side of (3).
In other words ([3, 8]),

((ι ◦ eg)(q)) . 1 = q, q ∈ k[x1, . . . , xn], (4)

where . denotes the Fock action by differential operators.
In this paper, it is proven that already the tensorial form,

Xi 7→ X̃i :=

n∑
l=1

xl

∞∑
N=0

AN (CN )li, (5)

of the universal formula (2), with A1 = 1, guarantees in characteristic 0
that precisely the symmetrically ordered noncommutative expressions

1

k!

∑
σ∈Σ(k)

Xασ(1)
· · ·Xασ(k)

,

interpreted via the embedding (5), and after acting upon the vacuum,
recover back the commutative product xα1 · · ·xαk . The coefficients AN
in (5) may be arbitrary forN > 0 and A1 = 1, instead of the choice AN =
(−1)N

N ! BN for all N , and Xi may be generators of an arbitrary finitely
generated associative k-algebra U , instead of the motivating choice Xi =
Xg
i ∈ U(g).

Even more generally, we may replace AN (CN )li in (5) by any

expression of the form pN−1,l
ij (∂1, . . . , ∂n)∂j provided that pN−1,l

ij =

pN−1,l
ij (∂1, . . . , ∂n) is a homogeneous polynomial of degree (N − 1) in

∂1, . . . , ∂n, antisymmetric under interchange of i and j. Note that the
previous case involving U(g) may be recovered by setting

pN−1,l
ij =

(−1)NBN
N !

n∑
s=1

(CN−1)lsC
s
ij .

We do not discuss when the correspondence (5) (or its generalization

involving pN−1,l
ij ) extends to a homomorphism U → Ân,k of algebras (in
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physics literature also called a realization of U). If U is tautologically de-
fined as the subalgebra of Ân,k generated by the expressions X̃i ∈ Ân,k,
we alert the reader that the corresponding PBW type theorem often fails
and the dimension of the space of degree k > 1 noncommutative polyno-
mials in X̃i generically exceeds the dimension of the space of symmetric
polynomials of degree k.

In the rest of the article below, Xi-s are defined as elements in Ân,k
from the start, hence we proceed without a distinction between Xi and
X̃i.

2 Results

Theorem 2. Assume k is a field of characteristic different from 2. Let

Xi = xi +

n∑
l=1

xl

∞∑
N=1

n∑
j=1

pN−1,l
ij (∂1, . . . , ∂n)∂j , i = 1, . . . , n, (6)

be n distinguished elements of Ân,k, where pN−1,l
ij (∂1, . . . , ∂n) are arbi-

trary homogeneous polynomials of degree (N − 1) in ∂1, . . . , ∂n, anti-
symmetric in lower indices i, j. Let α : {1, . . . , k} → {1, . . . , n} be any
function. Then, in the index notation, αi = α(i),∑

σ∈Σ(k)

Xασ(1)
· · ·Xασ(k)

. 1 = k!xα1 · · ·xαk . (7)

Proof. We prove the theorem by induction on degree k. For k = 1 all
terms with N ≥ 1 vanish, because we apply at least one derivative to 1.

For general k, we write the sum (7) over all permutations in Σ(k) in a
different way. We use the fact that the set of permutations of k elements
Σ(k) is in the bijection with the set of pairs (i, ρ) where 0 ≤ i ≤ k and
ρ ∈ Σ(k − 1). This can be done in many ways, but we use this concrete
simple-minded bijection

(i, ρ) 7→ σ, σ(k) :=

 i, k = 1,
ρ(k − 1), k > 1 and ρ(k − 1) < i,
ρ(k − 1) + 1, k > 1 and ρ(k − 1) ≥ i.

For example, (3, (2, 3, 1, 5, 4)) 7→ (3, 2, 4, 1, 6, 5).
Define a bijection Θi : {1, . . . , k − 1} → {1, . . . , i− 1, i+ 1, . . . , k} by

Θi(j) :=

{
j, j < i,
j + 1, j ≥ i.
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Clearly now σ(j + 1) = Θi(ρ(j)) for 1 ≤ j < k.
We may thus renumber the sum∑

σ∈Σ(k)

Xασ(2)
· · ·Xασ(k)

as the double sum

k∑
i=1

Xα(i) ·
∑

ρ∈Σ(k−1)

X(α◦Θi)(ρ(1)) · · ·X(α◦Θi)(ρ(k−1))

By the assumption of induction,∑
ρ∈Σ(k−1)

X(α◦Θi)(ρ(1)) · · ·X(α◦Θi)(ρ(k−1)) . 1

= (k − 1)!x(α◦Θi)(1) · · ·x(α◦Θi)(k−1)

The function Θi takes all values between 1 and k except i exactly once.
Therefore, the left-hand side of (7) may be rewritten as

(k − 1)!

k∑
i=1

Xα(i) . (xα(1) · · ·xα(i−1)xα(i+1) · · ·xα(k)). (8)

Substituting the expression (6) for Xα(i) in (8) we immediately observe
two summands. Let δ be the Kronecker symbol. Then the first summand
is

(k−1)!

k∑
i=1

n∑
r=1

xrδ
r
α(i)·(xα(1) · · ·xα(i−1)xα(i+1) · · ·xα(k)) = k!xα(1) · · ·xα(k),

yielding the desired right-hand side for (7). Hence for the step of induc-
tion on k it is sufficient to show that the remaining summand

(k − 1)!

k∑
i=1

∞∑
N=1

n∑
l=1

xl

n∑
s=1

pN−1,l
α(i)s ∂

s(xα(1) · · ·xα(i−1)xα(i+1) · · ·xα(k))

vanishes. This follows if for any N > 0 the contribution

k∑
i=1

n∑
s=1

pN−1,l
α(i)s ∂

s(xα(1) · · ·xα(i−1)xα(i+1) · · ·xα(k)) = 0. (9)

Let s ∈ {1, . . . , n} and M(s) = {j ∈ {1, . . . , i−1, i+ 1, . . . , k}|s = α(j)}.
By elementary application of partial derivatives,

∂s(xα(1) · · ·xα(i−1)xα(i+1) · · ·xα(k)) =
∑

j∈M(s)

∏
r∈{1,...,k}\{i,j}

xα(r).

(10)
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In particular, the contributions from s /∈ {α(1), . . . , α(i−1), α(i+1), . . . ,
α(k)}, that is forM(s) = ∅, vanish and ∂s(xα(1) · · ·xα(i−1)xα(i+1) · · ·xα(k))
= 0.

Thus, for fixed i, the overall sum over all s ∈ {1, . . . , n} becomes a
new sum over all j ∈ {1, . . . , i − 1, i + 1, . . . , k} and each j 6= i appears
precisely once, namely for s = α(j). For fixed pair (i, s), notice that the
summands do not depend on j ∈M(s), but we do not use this fact. By

antisymmetry, pN−1,l
α(i)α(i) = 0 if chark 6= 2, hence we are free to add any

terms multiplied by pN−1,l
α(i)α(i). For fixed i, we conclude

n∑
s=1

pN−1,l
α(i)s ∂

s(xα(1) · · ·xα(i−1)xα(i+1) · · ·xα(k))

=

k∑
j=1

pN−1,l
α(i)α(j)

∏
r∈{1,...,k}\{i,j}

xα(r).

Regarding that
∏
r∈{1,...,k}\{i,j} xα(r) is a symmetric tensor in i, j, and

pN−1,l
α(i)α(j) is antisymmetric under exchange of i and j, their contraction

must be zero,

k∑
i=1

k∑
j=1

pN−1,l
α(i)α(j)

∏
r∈{1,...,k}\{i,j}

xα(r) = 0.

Therefore, (9) follows, and consequently the step of induction on k.

The reader may want to understand the reindexing and cancellation
arguments following formula (10) on an example where α is not injective.
Suppose n = 3, k = 4, and α sends 1, 2, 3, 4 to 1, 3, 3, 2 respectively. Then∑4
i=1

∑4
s=1 p

N−1,l
α(i)s ∂

s
(∏

r 6=i xα(r)

)
has contributions as follows: for i = 1

one obtains
∑
s p

N−1,l
1s ∂s(x3x3x2) = pN−1,l

12 x3x3 +2pN−1,l
13 x3x2, for i = 2

and i = 3 equal contributions
∑
s p

N−1,l
3s ∂s(x1x3x2) = pN−1,l

31 x3x2 +

pN−1,l
32 x1x3+pN−1,l

33 x1x2, and for i = 4 one obtains
∑
s p

N−1,l
2s ∂s(x1x3x3)

= pN−1,l
21 x3x3 +2pN−1,l

23 x1x3. By the antisymmetry of pN−1,l, the double
sum is 0.

Corollary 3. Under the assumptions of Theorem 2, there is a well-
defined k-linear map

ẽ : k[x1, . . . , xn]→ Ân,k

extending the formulas

ẽ : xα1
· · ·xαk 7→

∑
σ∈Σ(k)

Xασ(1)
· · ·Xασ(k)

, (11)
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for all k ≥ 0 and for all (nonstrictly) monotone α : {1, . . . , k} → {1, . . . , n}.
Map ẽ satisfies

ẽ(Pk) . 1 = k!Pk (12)

for all (commutative) polynomials Pk = Pk(xα1
, . . . , xαn) homogeneous

of degree k. In particular, ẽ is injective iff chark = 0. In that case, the
elements e(xα1 · · ·xαn) are linearly independent. If chark = 0, a modi-
fied map e : k[x1, . . . , xn]→ Ân,k with normalization on k-homogeneous
elements given by

e : xα1
· · ·xαk 7→

1

k!

∑
σ∈Σ(k)

Xασ(1)
· · ·Xασ(k)

, (13)

is an injection.

The map ẽ is well-defined because the right-hand side in (11) is sym-
metric in α1, . . . , αk. Formula (7) can be restated as ẽ(−) . 1 = k! id.
Note that the expressions (11) do not span an associative subalgebra, but
only a subspace e(k[x1, . . . , xn]) of the subalgebra k〈X1, . . . , Xn〉 of Ân,k
generated by X1, . . . , Xn, in general. Denote by π : k〈X1, . . . , Xn〉 →
k[x1, . . . , xn] the vector space projection given by the Fock action on the
vacuum vector 1 ∈ k[x1, . . . , xn], that is π(P ) = P.1, P ∈ k〈X1, . . . , Xn〉.
If chark = 0, the map e can be viewed as a k-linear section of the pro-
jection map π. In particular, e is an isomorphism onto its own image
and Ker π ⊕ Im e = k〈X1, . . . , Xn〉.
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[7] S. Meljanac, Z. Škoda, M. Stojić, Lie algebra type noncommutative
phase spaces are Hopf algebroids, Lett. Math. Phys. 107:3, 475–503
(2017) https://arxiv.org/abs/1409.8188
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cesta 54, 10002 Zagreb, Croatia
E-mail address: zskoda@unizd.hr

60

https://arxiv.org/abs/math/9811174
https://arxiv.org/abs/math/9811174
https://arxiv.org/abs/1409.8188
https://www2.irb.hr/korisnici/zskoda/scopr8.pdf
https://www2.irb.hr/korisnici/zskoda/scopr8.pdf
https://arxiv.org/abs/0711.0149
https://arxiv.org/abs/0711.0149

	Introduction and motivation
	Results

