ACTA MATHEMATICA SPALATENSIA Vol.1 (2021) 53–60 [https://doi](https://doi.org/10.32817/ams.1.1.5).org/10.32817/ams.1.1.5

Received: 04 Oct 2019 Accepted: 05 Jun 2020

A note on symmetric orderings

Zoran Škoda

Abstract

Let \hat{A}_n be the completion by the degree of a differential operator of the *n*-th Weyl algebra with generators $x_1, \ldots, x_n, \partial^1, \ldots, \partial^n$. Consider *n* elements X_1, \ldots, X_n in \hat{A}_n of the form

$$
X_i = x_i + \sum_{K=1}^{\infty} \sum_{l=1}^{n} \sum_{j=1}^{n} x_l p_{ij}^{K-1,l}(\partial) \partial^j,
$$

where $p_{ij}^{K-1,l}(\partial)$ is a degree $(K-1)$ homogeneous polynomial in $\partial^1,\ldots,\partial^n,$ antisymmetric in subscripts i, j . Then for any natural k and any function $i: \{1, \ldots, k\} \rightarrow \{1, \ldots, n\}$ we prove

$$
\sum_{\sigma \in \Sigma(k)} X_{i_{\sigma(1)}} \cdots X_{i_{\sigma(k)}} \triangleright 1 = k! \, x_{i_1} \cdots x_{i_k},
$$

where $\Sigma(k)$ is the symmetric group on k letters and \triangleright denotes the Fock action of the \hat{A}_n on the space of (commutative) polynomials.

Keywords: Weyl algebra, symmetric ordering 2010 Math. Subj. Class.: 16S30,16S32

1 Introduction and motivation

In an earlier article [\[3\]](#page-6-0), we derived a universal formula for an embedding of the universal enveloping algebra $U(\mathfrak{g})$ of any Lie algebra g with underlying rank n free module over a commutative ring k containing the field Q of rational numbers into a completion $\hat{A}_{n,k}$ of the *n*-th Weyl algebra over k .

Definition 1. The n-th Weyl algebra $A_{n,k}$ over a commutative ring **k** is the associative k -algebra defined by generators and relations as follows:

$$
A_{n,\boldsymbol{k}} := \boldsymbol{k}\langle x_1,\ldots,x_n,\partial^1,\ldots,\partial^n\rangle/\langle[x_i,x_j],[\partial^i,\partial^j],[x_i,\partial^j]-\delta_i^j,i,j=1,\ldots,n\rangle.
$$

We use the "contravariant" notation for the generators of $A_{n,k}$ ([\[7,](#page-7-0) 1.1]) and δ_j^i is the Kronecker symbol. The reader should recall the usual interpretation of the Weyl algebra elements as regular differential oper-ators [\[2,](#page-6-1) [3\]](#page-6-0). In other words, the elements of $A_{n,k}$ act on the polynomial algebra $\mathbf{k}[x_1,\ldots,x_n]$, consisting of commutative polynomials via the physicists' Fock action here denoted by $\triangleright : A_{n,k} \otimes k[x_1, \ldots, x_n] \rightarrow$ $k[x_1, \ldots, x_n]$. By definition, generators x_i act as the multiplication operators by x_i and ∂^j act as partial derivatives. The unit polynomial $1 \in k[x_1, \ldots, x_n]$ is interpreted as the vacuum state.

Complete $A_{n,k}$ along the filtration given by the degree of differential operator ([\[3,](#page-6-0) [7,](#page-7-0) [8\]](#page-7-1)); the completion will be denoted $\hat{A}_{n,\boldsymbol{k}}$. Thus, the elements in $\hat{A}_{n,k}$ can be represented as arbitrary power series in $\partial^1, \ldots, \partial^n$ with coefficients (say on the left) in the polynomial ring $\mathbf{k}[x_1, \ldots, x_n]$.

For a fixed basis $X_1^{\mathfrak{g}}, \ldots, X_n^{\mathfrak{g}}$ of \mathfrak{g} , denote by $C_{ij}^k \in k$ for $i, j, k \in$ $\{1, \ldots, n\}$ the structure constants defined by

$$
[X_i^{\mathfrak{g}}, X_j^{\mathfrak{g}}] = \sum_{k=1}^n C_{ij}^k X_k^{\mathfrak{g}}.
$$
 (1)

Constants C_{ij}^k are antisymmetric in lower indices and satisfy a quadratic relation reflecting the Jacobi identity in g. According to [\[3\]](#page-6-0), there is a unique monomorphism of k-algebras $\iota: U(\mathfrak{g}) \to \hat{A}_{n,k}$ extending the formulas

$$
X_i^{\mathfrak{g}} \mapsto \iota(X_i^{\mathfrak{g}}) = \sum_{l=1}^n x_l \sum_{N=0}^\infty \frac{(-1)^N}{N!} B_N(\mathcal{C}^N)_i^l, \tag{2}
$$

where B_N is the *n*-th Bernoulli number and C is an $n \times n$ matrix with values in k , defined by

$$
\mathcal{C}^i_j = \sum_{k=1}^n C^i_{jk} \partial^k.
$$

The monomorphism ι does not depend on the choice of the basis; over $\mathbb R$ and $\mathbb C$ the formula [\(2\)](#page-1-0) appeared to be known much before ([\[1,](#page-6-2) [5\]](#page-7-2)) and, suitably interpreted, corresponds to the Gutt's star product [\[4\]](#page-7-3). A simple differential geometric derivation of the formula (2) over $\mathbb R$ is explained in detail in [\[7,](#page-7-0) Section 1.2.]. Similarly, Sections 7–9 of [\[3\]](#page-6-0) provide a geometrical derivation in formal geometry over any ring containing rationals. See also [\[6\]](#page-7-4) for another point of view. Expression [\(2\)](#page-1-0) is related to the

part of Campbell-Baker-Hausdorff series linear in the first argument ([\[3,](#page-6-0) Sections 7–9]). Denote by

$$
e^{\mathfrak{g}}: \mathbf{k}[x_1,\ldots,x_n] \to U(\mathfrak{g}), \quad x_{\alpha_1}\cdots x_{\alpha_k} \mapsto \frac{1}{k!} \sum_{\sigma \in \Sigma(k)} X_{\alpha_{\sigma 1}}^{\mathfrak{g}} \cdots X_{\alpha_{\sigma k}}^{\mathfrak{g}} \quad (3)
$$

the standard symmetrization (or coexponential) map (of vector spaces), where the symmetric group on k letters is denoted $\Sigma(k)$. Via monomorphism ι , the expression on the right-hand side of [\(3\)](#page-2-0) can be interpreted in $\hat{A}_{n,k}$. If we apply the resulting element of $\hat{A}_{n,k}$ on 1 using (the formal completion of) the Fock action, we recover back the left-hand side of [\(3\)](#page-2-0). In other words ([\[3,](#page-6-0) [8\]](#page-7-1)),

$$
((\iota \circ e^{\mathfrak{g}})(q)) \triangleright 1 = q, \quad q \in \mathbf{k}[x_1, \dots, x_n], \tag{4}
$$

where \triangleright denotes the Fock action by differential operators.

In this paper, it is proven that already the tensorial form,

$$
X_i \mapsto \tilde{X}_i := \sum_{l=1}^n x_l \sum_{N=0}^\infty A_N (\mathcal{C}^N)_i^l, \tag{5}
$$

of the universal formula [\(2\)](#page-1-0), with $A_1 = 1$, guarantees in characteristic 0 that precisely the symmetrically ordered noncommutative expressions

$$
\frac{1}{k!} \sum_{\sigma \in \Sigma(k)} X_{\alpha_{\sigma(1)}} \cdots X_{\alpha_{\sigma(k)}},
$$

interpreted via the embedding [\(5\)](#page-2-1), and after acting upon the vacuum, recover back the commutative product $x_{\alpha_1} \cdots x_{\alpha_k}$. The coefficients A_N in [\(5\)](#page-2-1) may be arbitrary for $N > 0$ and $A_1 = 1$, instead of the choice $A_N =$ $\frac{(-1)^N}{N!}B_N$ for all N, and X_i may be generators of an arbitrary finitely generated associative **k**-algebra U, instead of the motivating choice $X_i =$ $X_i^{\mathfrak{g}} \in U(\mathfrak{g}).$

Even more generally, we may replace $A_N(\mathcal{C}^N)_i^l$ in [\(5\)](#page-2-1) by any expression of the form $p_{ij}^{N-1,l}(\partial^1,\ldots,\partial^n)\partial^j$ provided that $p_{ij}^{N-1,l}$ $p_{ij}^{N-1,l}(\partial^1,\ldots,\partial^n)$ is a homogeneous polynomial of degree $(N-1)$ in $\partial^1, \ldots, \partial^n$, antisymmetric under interchange of i and j. Note that the previous case involving $U(\mathfrak{g})$ may be recovered by setting

$$
p_{ij}^{N-1,l} = \frac{(-1)^N B_N}{N!} \sum_{s=1}^n (\mathcal{C}^{N-1})^l_s C_{ij}^s.
$$

We do not discuss when the correspondence [\(5\)](#page-2-1) (or its generalization involving $p_{ij}^{N-1,l}$) extends to a homomorphism $U \to \hat{A}_{n,k}$ of algebras (in

physics literature also called a *realization* of U). If U is tautologically defined as the subalgebra of $\hat{A}_{n,k}$ generated by the expressions $\tilde{X}_i \in \hat{A}_{n,k}$, we alert the reader that the corresponding PBW type theorem often fails and the dimension of the space of degree $k > 1$ noncommutative polynomials in \tilde{X}_i generically exceeds the dimension of the space of symmetric polynomials of degree k.

In the rest of the article below, X_i -s are defined as elements in $\hat{A}_{n,k}$ from the start, hence we proceed without a distinction between X_i and \tilde{X}_i .

2 Results

Theorem 2. Assume **k** is a field of characteristic different from 2. Let

$$
X_i = x_i + \sum_{l=1}^n x_l \sum_{N=1}^\infty \sum_{j=1}^n p_{ij}^{N-1,l} (\partial^1, \dots, \partial^n) \partial^j, \quad i = 1, \dots, n,
$$
 (6)

be n distinguished elements of $\hat{A}_{n,k}$, where $p_{ij}^{N-1,l}(\partial^1,\ldots,\partial^n)$ are arbitrary homogeneous polynomials of degree $(N-1)$ in $\partial^1, \ldots, \partial^n$, antisymmetric in lower indices i, j. Let α : $\{1, \ldots, k\} \rightarrow \{1, \ldots, n\}$ be any function. Then, in the index notation, $\alpha_i = \alpha(i)$,

$$
\sum_{\sigma \in \Sigma(k)} X_{\alpha_{\sigma(1)}} \cdots X_{\alpha_{\sigma(k)}} \triangleright 1 = k! \, x_{\alpha_1} \cdots x_{\alpha_k}.\tag{7}
$$

Proof. We prove the theorem by induction on degree k. For $k = 1$ all terms with $N \geq 1$ vanish, because we apply at least one derivative to 1.

For general k, we write the sum [\(7\)](#page-3-0) over all permutations in $\Sigma(k)$ in a different way. We use the fact that the set of permutations of k elements $\Sigma(k)$ is in the bijection with the set of pairs (i, ρ) where $0 \leq i \leq k$ and $\rho \in \Sigma(k-1)$. This can be done in many ways, but we use this concrete simple-minded bijection

$$
(i,\rho) \mapsto \sigma, \quad \sigma(k) := \begin{cases} i, & k = 1, \\ \rho(k-1), & k > 1 \text{ and } \rho(k-1) < i, \\ \rho(k-1) + 1, & k > 1 \text{ and } \rho(k-1) \ge i. \end{cases}
$$

For example, $(3, (2, 3, 1, 5, 4)) \mapsto (3, 2, 4, 1, 6, 5).$

Define a bijection Θ_i : $\{1, \ldots, k-1\} \rightarrow \{1, \ldots, i-1, i+1, \ldots, k\}$ by

$$
\Theta_i(j) := \begin{cases} j, & j < i, \\ j+1, & j \geq i. \end{cases}
$$

Clearly now $\sigma(j + 1) = \Theta_i(\rho(j))$ for $1 \leq j < k$.

We may thus renumber the sum

$$
\sum_{\sigma \in \Sigma(k)} X_{\alpha_{\sigma(2)}} \cdots X_{\alpha_{\sigma(k)}}
$$

as the double sum

$$
\sum_{i=1}^{k} X_{\alpha(i)} \cdot \sum_{\rho \in \Sigma(k-1)} X_{(\alpha \circ \Theta_i)(\rho(1))} \cdots X_{(\alpha \circ \Theta_i)(\rho(k-1))}
$$

By the assumption of induction,

$$
\sum_{\rho \in \Sigma(k-1)} X_{(\alpha \circ \Theta_i)(\rho(1))} \cdots X_{(\alpha \circ \Theta_i)(\rho(k-1))} \triangleright 1
$$

= $(k-1)! x_{(\alpha \circ \Theta_i)(1)} \cdots x_{(\alpha \circ \Theta_i)(k-1)}$

The function Θ_i takes all values between 1 and k except i exactly once.

Therefore, the left-hand side of [\(7\)](#page-3-0) may be rewritten as

$$
(k-1)!\sum_{i=1}^{k} X_{\alpha(i)} \triangleright (x_{\alpha(1)} \cdots x_{\alpha(i-1)} x_{\alpha(i+1)} \cdots x_{\alpha(k)}).
$$
 (8)

Substituting the expression [\(6\)](#page-3-1) for $X_{\alpha(i)}$ in [\(8\)](#page-4-0) we immediately observe two summands. Let δ be the Kronecker symbol. Then the first summand is

$$
(k-1)!\sum_{i=1}^k\sum_{r=1}^n x_r\delta_{\alpha(i)}^r \cdot (x_{\alpha(1)}\cdots x_{\alpha(i-1)}x_{\alpha(i+1)}\cdots x_{\alpha(k)})=k!x_{\alpha(1)}\cdots x_{\alpha(k)},
$$

yielding the desired right-hand side for [\(7\)](#page-3-0). Hence for the step of induction on k it is sufficient to show that the remaining summand

$$
(k-1)!\sum_{i=1}^{k}\sum_{N=1}^{\infty}\sum_{l=1}^{n}x_{l}\sum_{s=1}^{n}p_{\alpha(i)s}^{N-1,l}\partial^{s}(x_{\alpha(1)}\cdots x_{\alpha(i-1)}x_{\alpha(i+1)}\cdots x_{\alpha(k)})
$$

vanishes. This follows if for any $N > 0$ the contribution

$$
\sum_{i=1}^{k} \sum_{s=1}^{n} p_{\alpha(i)s}^{N-1,l} \partial^{s} (x_{\alpha(1)} \cdots x_{\alpha(i-1)} x_{\alpha(i+1)} \cdots x_{\alpha(k)}) = 0.
$$
 (9)

Let $s \in \{1, \ldots, n\}$ and $M(s) = \{j \in \{1, \ldots, i-1, i+1, \ldots, k\} | s = \alpha(j)\}.$ By elementary application of partial derivatives,

$$
\partial^{s}(x_{\alpha(1)}\cdots x_{\alpha(i-1)}x_{\alpha(i+1)}\cdots x_{\alpha(k)}) = \sum_{j\in M(s)} \prod_{r\in\{1,\ldots,k\}\backslash\{i,j\}} x_{\alpha(r)}.
$$
\n(10)

In particular, the contributions from $s \notin {\alpha(1), \ldots, \alpha(i-1), \alpha(i+1), \ldots}$ $\alpha(k)$, that is for $M(s) = \emptyset$, vanish and $\partial^s(x_{\alpha(1)} \cdots x_{\alpha(i-1)} x_{\alpha(i+1)} \cdots x_{\alpha(k)})$ $= 0$.

Thus, for fixed i, the overall sum over all $s \in \{1, \ldots, n\}$ becomes a new sum over all $j \in \{1, \ldots, i-1, i+1, \ldots, k\}$ and each $j \neq i$ appears precisely once, namely for $s = \alpha(j)$. For fixed pair (i, s) , notice that the summands do not depend on $j \in M(s)$, but we do not use this fact. By antisymmetry, $p_{\alpha(i)}^{N-1,l} = 0$ if char $k \neq 2$, hence we are free to add any terms multiplied by $p_{\alpha(i)\alpha(i)}^{N-1,l}$ $\alpha(i)\alpha(i)$. For fixed i, we conclude

$$
\sum_{s=1}^{n} p_{\alpha(i)s}^{N-1,l} \partial^s(x_{\alpha(1)} \cdots x_{\alpha(i-1)} x_{\alpha(i+1)} \cdots x_{\alpha(k)})
$$

=
$$
\sum_{j=1}^{k} p_{\alpha(i)\alpha(j)}^{N-1,l} \prod_{r \in \{1, \ldots, k\} \setminus \{i, j\}} x_{\alpha(r)}.
$$

Regarding that $\prod_{r \in \{1,\ldots,k\}\setminus\{i,j\}} x_{\alpha(r)}$ is a symmetric tensor in i, j , and $p_{\alpha(i)\alpha(i)}^{N-1,l}$ $a_{\alpha(i)\alpha(j)}^{N-1,i}$ is antisymmetric under exchange of i and j, their contraction must be zero,

$$
\sum_{i=1}^{k} \sum_{j=1}^{k} p_{\alpha(i)\alpha(j)}^{N-1,l} \prod_{r \in \{1, ..., k\} \setminus \{i, j\}} x_{\alpha(r)} = 0.
$$

Therefore, (9) follows, and consequently the step of induction on k. \Box

The reader may want to understand the reindexing and cancellation arguments following formula [\(10\)](#page-4-2) on an example where α is not injective. Suppose $n = 3$, $k = 4$, and α sends 1, 2, 3, 4 to 1, 3, 3, 2 respectively. Then $\sum_{i=1}^{4} \sum_{s=1}^{4} p_{\alpha(i)s}^{N-1,l}$ $\sum_{\alpha(i)s}^{N-1,l} \partial^s \left(\prod_{r \neq i} x_{\alpha(r)} \right)$ has contributions as follows: for $i = 1$ one obtains $\sum_s p_{1s}^{N-1,l} \partial^s (x_3x_3x_2) = p_{12}^{N-1,l} x_3x_3 + 2p_{13}^{N-1,l} x_3x_2$, for $i = 2$ and $i = 3$ equal contributions $\sum_{s} p_{3s}^{N-1,l} \partial^s (x_1 x_3 x_2) = p_{31}^{N-1,l} x_3 x_2 +$ $p_{32}^{N-1,l}x_1x_3+p_{33}^{N-1,l}x_1x_2$, and for $i=4$ one obtains $\sum_s p_{2s}^{N-1,l} \partial^s(x_1x_3x_3)$ $= p_{21}^{N-1,l} x_3 x_3 + 2p_{23}^{N-1,l} x_1 x_3$. By the antisymmetry of $p^{N-1,l}$, the double sum is 0.

Corollary 3. Under the assumptions of Theorem [2,](#page-3-2) there is a welldefined k -linear map

$$
\tilde{e} \colon \mathbf{k}[x_1,\ldots,x_n] \to \hat{A}_{n,\mathbf{k}}
$$

extending the formulas

$$
\tilde{e}: x_{\alpha_1} \cdots x_{\alpha_k} \mapsto \sum_{\sigma \in \Sigma(k)} X_{\alpha_{\sigma(1)}} \cdots X_{\alpha_{\sigma(k)}},\tag{11}
$$

for all $k \geq 0$ and for all (nonstrictly) monotone α : $\{1, \ldots, k\} \rightarrow \{1, \ldots, n\}$. Map \tilde{e} satisfies

$$
\tilde{e}(P_k) \triangleright 1 = k! P_k \tag{12}
$$

for all (commutative) polynomials $P_k = P_k(x_{\alpha_1}, \ldots, x_{\alpha_n})$ homogeneous of degree k. In particular, \tilde{e} is injective iff char $\mathbf{k} = 0$. In that case, the elements $e(x_{\alpha_1} \cdots x_{\alpha_n})$ are linearly independent. If char $\mathbf{k} = 0$, a modified map $e: \mathbf{k}[x_1,\ldots,x_n] \to \hat{A}_{n,k}$ with normalization on k-homogeneous elements given by

$$
e: x_{\alpha_1} \cdots x_{\alpha_k} \mapsto \frac{1}{k!} \sum_{\sigma \in \Sigma(k)} X_{\alpha_{\sigma(1)}} \cdots X_{\alpha_{\sigma(k)}},
$$
\n(13)

is an injection.

The map \tilde{e} is well-defined because the right-hand side in [\(11\)](#page-5-0) is symmetric in $\alpha_1, \ldots, \alpha_k$. Formula [\(7\)](#page-3-0) can be restated as $\tilde{e}(-) \triangleright 1 = k!$ id. Note that the expressions [\(11\)](#page-5-0) do not span an associative subalgebra, but only a subspace $e(\mathbf{k}[x_1,\ldots,x_n])$ of the subalgebra $\mathbf{k}\langle X_1,\ldots,X_n\rangle$ of $\hat{A}_{n,\mathbf{k}}$ generated by X_1, \ldots, X_n , in general. Denote by $\pi : \mathbf{k}\langle X_1, \ldots, X_n \rangle \rightarrow$ $k[x_1, \ldots, x_n]$ the vector space projection given by the Fock action on the vacuum vector $1 \in \mathbf{k}[x_1,\ldots,x_n]$, that is $\pi(P) = P \triangleright 1, P \in \mathbf{k}\langle X_1,\ldots,X_n\rangle$. If char $k = 0$, the map e can be viewed as a k-linear section of the projection map π . In particular, e is an isomorphism onto its own image and Ker $\pi \oplus \text{Im } e = \mathbf{k} \langle X_1, \ldots, X_n \rangle$.

Acknowledgements. I have proved the result in 2006 at IRB; the final writeup has been finished and submitted in the first days of my Autumn 2019 stay at IHES. In the final stage, I have been partly supported by ´ the Croatian Science Foundation under the Project "New Geometries for Gravity and Spacetime" (IP-2018-01-7615).

References

- [1] F. A. Berezin, Some remarks about the associated envelope of a Lie $algebra$, Funkc. Anal. Pril 1:2 (1967) 1–14 (in Russian); Engl. transl. Funct. Anal. Appl. 1:2 (1967) 91–102.
- [2] S. C. Coutinho, A primer of algebraic D-modules, Cambr. UP 1995.
- [3] N. Durov, S. Meljanac, A. Samsarov, Z. Skoda, A universal formula for representing Lie algebra generators as formal power series with coefficients in the Weyl algebra, J. Algebra $309:1$, (2007) 318–359, https://arxiv.[org/abs/math/0604096](https://arxiv.org/abs/math/0604096)
- [4] S. Gutt, An explicit \star -product on the cotangent bundle of a Lie group, Lett. Math. Phys. 7 (1983) 249–258.
- [5] M. Karasev, V. Maslov, Nonlinear Poisson brackets, Moskva, Nauka 1991. (in Russian); Engl.: AMS Transl. Math. Monogr. 119 (1993)
- [6] V. Kathotia, Kontsevich's universal formula for deformation quantization and the Campbell-Baker-Hausdorff formula, Internat. J. Math. 11 (2000); no. 4, 523–551; [https://arxiv](https://arxiv.org/abs/math/9811174).org/abs/math/ [9811174](https://arxiv.org/abs/math/9811174)
- $[7]$ S. Meljanac, Z. Skoda, M. Stojić, Lie algebra type noncommutative phase spaces are Hopf algebroids, Lett. Math. Phys. 107:3, 475–503 (2017) [https://arxiv](https://arxiv.org/abs/1409.8188).org/abs/1409.8188
- [8] S. Meljanac, Z. Skoda, Leibniz rules for enveloping algebras and a diagrammatic expansion, [https://www2](https://www2.irb.hr/korisnici/zskoda/scopr8.pdf).irb.hr/ [korisnici/zskoda/scopr8](https://www2.irb.hr/korisnici/zskoda/scopr8.pdf).pdf (old version: [https://arxiv](https://arxiv.org/abs/0711.0149).org/ [abs/0711](https://arxiv.org/abs/0711.0149).0149)

Zoran Škoda

(1) Department of Teachers' Education, University of Zadar, Franje Tudmana 24, 23000 Zadar, Croatia

(2) Division of Theoretical Physics, Ruđer Bošković Institute, Bijenička cesta 54, 10002 Zagreb, Croatia

E-mail address: zskoda@unizd.hr