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We consider a two-parameter family of Drinfeld twists generated from a simple Jordanian

twist further twisted by 1-cochains. Twists from this family interpolate between two sim-

ple Jordanian twists. Relations between them are constructed and discussed. It is proved
that there exists a one-parameter family of twists identical to a simple Jordanian twist.

The twisted coalgebra, star product and coordinate realizations of the κ-Minkowski non-

commutative space–time are presented. Real forms of Jordanian deformations are also
discussed. The method of similarity transformations is applied to the Poincaré–Weyl
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Hopf algebra and two types of one-parameter families of dispersion relations are con-
structed. Mathematically equivalent deformations, that are related to nonlinear changes

of symmetry generators and linked with similarity maps, may lead to differences in the

description of physical phenomena.
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1. Introduction

Many proposals to resolve fundamental issues at the Planck scale involve the

development of models of field theories on noncommutative (NC) spaces, most

notably the κ-Minkowski space–time. The parameter κ is here usually interpreted

as the Planck mass or the quantum gravity scale. One of the possible quantum sym-

metries of the κ-Minkowski NC space–time is the κ-Poincaré quantum group1,2 and

it constitutes one of the examples of deformed relativistic space–time symmetries

and the corresponding dispersion relations. Similar models exhibit Hopf algebra

symmetries.

For Hopf algebras, there is a remarkable systematic twisting procedure, in-

vented by Drinfeld.3,4 Namely, from a given Hopf algebra H and a twist element

F ∈ H ⊗ H satisfying the 2-cocycle condition, one produces a new Hopf algebra

HF with the same algebra sector, but a different coalgebra sector, with coproduct

∆F (h) = F∆(h)F−1. If a space–time has a Hopf algebra symmetry, and the Hopf

algebra is twisted, then the space–time can also be twisted using the same twist and

preserving the covariance properties. Moreover, many other constructions like dif-

ferential calculi and, to some extent, some basic constructions of field theories can

be systematically deformed by procedures involving only a twist. Thus, the Drin-

feld twist provides a laboratory for systematic deformation of space–time and for

investigating its deformed relativistic symmetry, geometric and physical structures.

Drinfeld 2-cocycles can be further modified by 1-cochains.3,4 Given a Drinfeld

twist F and an invertible 1-cochain ω ∈ H, the expression Fω = (ω−1⊗ω−1)F∆(ω)

defines a new Drinfeld twist cohomologous to F . If we start from a trivial 2-cocycle

1⊗ 1, we obtain a twist, (ω−1⊗ω−1)∆(ω), which is a 2-coboundary in the sense of

non-Abelian cohomology.4 Cohomologous 2-cocycles induce isomorphic deformed

Hopf algebras and equivalent related mathematical constructions. Hence, we may

say that the transformation of changing a 2-cocycle by a 1-cochain is a gauge

transformation of the 2-cocycle.

In the late 1980s remarkable deformations of R-matrices and related quantum

groups have been found under the name of Jordan(ian) R-matrices and Jordanian

deformations.5,6 The corresponding Drinfeld twist has been written out indepen-

dently in Refs. 7 and 8. These examples involve the universal enveloping algebra

of the two dimensional solvable Lie algebra (with generators H, E, [H,E] = E),

some Hopf algebra which contains it (U(sl(2)), Yangian Y (gl(2)) etc.) or their
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duals. A special example of a Jordanian twist is F0 = exp(ln(1 + αE) ⊗ H) =

1 ⊗ 1 + αE ⊗ H + O(α2) with α a deformation parameter.8 Also, r-symmetric

versions of the Jordanian twist, where r = E⊗H−H⊗E is the classical r-matrix,

were introduced in Refs. 9–11.

The Jordanian twist reappeared in the context of the κ-Minkowski NC space–

time.12–15 A relation with the symmetry of the κ-Minkowski space–time is estab-

lished with the introduction of the generators of relativistic symmetries, dilatation

D and momenta pα (instead of generators H and E of the sl(2) algebra) satisfy-

ing the same commutation relation, [pα, D] = pα. Dilatation D is included in a

minimal extension of the relativistic space–time symmetry, the so-called Poincaré–

Weyl algebra generated by {Mµν , pµ, D}, where Mµν denote the Lorentz generators.

One-parameter interpolation between Jordanian twists, which are generated from a

simple Jordanian twist F0 by twisting with 1-cochains, were studied in Refs. 16–18.

Applications of Jordanian twists have been of interest in recent literature.

For example, Jordanian deformations of the conformal algebra were considered

in Refs. 19–22. In Refs. 20–22, deformations of the anti-de Sitter and the de Sitter

algebra were investigated. Jordanian deformations have also been considered within

applications in the AdS/CFT correspondence.23–26 Integrable deformations of

sigma models in relation to deformations of AdS5 and supergravity were inves-

tigated.27,28 Jordanian twists have been applied in the deformation of space–time

metrics,29 dispersion relations14,15 and gauge theories.30

In this paper, we consider a two-parameter family of Drinfeld twists generated

from a simple Jordanian twist by further twisting by 1-cochains. This is a general-

ization of results presented in Refs. 16–18. The first part of the paper is a sort of

supplement to Ref. 17 with new results presented in Secs. 3–5. This two parameter

generalization leads to the κ-Minkowski space–time and produces the same defor-

mation of the Poincaré–Weyl symmetry algebra. We show that twists from this

family interpolate between two simple Jordanian twists. Using the method of simi-

larity transformations, we construct one-parameter families of dispersion relations

related to each other by inverse transformation. We point out that mathematically

equivalent deformations, that are related to nonlinear changes of the symmetry gen-

erators and linked with similarity maps, may lead to differences in the description

of physical phenomena.

In Sec. 2, two special families of twists induced by 1-cochains are presented with

results rewritten from Refs. 17 and 18. These twists interpolate between two simple

Jordanian twists. In Sec. 3, we define a two-parameter family of Jordanian twists

which is a generalization from Ref. 17. Relations between them are presented and

discussed. In Sec. 4, we also generalize results from Ref. 17. In Subsec. 4.1, the

twisted coalgebra sector and, in Subsec. 4.2, coordinate realizations and the star

product are presented. Real forms of new Jordanian deformations are discussed

in Subsec. 4.3. In Sec. 5, a method of similarity transformations is applied to the

Poincaré–Weyl Hopf algebra and one-parameter families of dispersion relations are

constructed. At the end of Sec. 5, concluding remarks are given.
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2. Families FL,u and FR,u of Jordanian Twists and the Relation

between Them

In Ref. 16, the following family of Drinfeld twists was considered:

FL,u = exp(−u(DA⊗ 1 + 1⊗DA))

× exp(− ln(1 +A)⊗D) exp(∆(uDA)) (1)

= exp

(
u

κ
(DP ⊗ 1 + 1⊗DP )

)
exp

(
− ln

(
1− 1

κ
P

)
⊗D

)
× exp

(
−∆

(
u

κ
DP

))
, (2)

where generators of dilatation D and momenta P satisfy [P,D] = P and A =

− 1
κP . The deformation parameter κ is of the order of the Planck mass, u is a

real dimensionless parameter and ∆ is the undeformed coproduct. These twists are

constructed using a 1-cochain ωL = exp
(
−uκDP

)
and they satisfy the normalization

and cocycle condition.

The corresponding deformed Hopf algebra is given by

∆FL,u(pµ) = FL,u∆pµF−1
L,u =

pµ ⊗
(
1 + u

κP
)

+
(
1− 1−u

κ P
)
⊗ pµ

1⊗ 1 + u(1− u) 1
κ2P ⊗ P

, (3)

∆FL,u(D) = FL,u∆DF−1
L,u

=

(
D ⊗ 1

1 + u
κP

+
1

1− 1−u
κ P

⊗D

)

×
(

1⊗ 1 + u(1− u)
1

κ2
P ⊗ P

)
, (4)

SFL,u(pµ) =
pµ

1− (1− 2u) 1
κP

, (5)

SFL,u(D) = −

(
1− (1− 2u)Pκ

1 + u
κP

)
D

(
1 +

u

κ
P

)
, (6)

where pµ, µ ∈ {0, 1, . . . , n − 1} are momenta in the Minkowski space–time and

P = vαpα, where vαv
α ∈ {1, 0,−1}.

For u = 0, FL,u=0 reduces to the Jordanian twist

F0 = exp

(
− ln

(
1− 1

κ
P

)
⊗D

)

=

∞∑
k=0

(
−P
κ

)k
⊗
(
−D
k

)
. (7)
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For u = 1/2, FL,u=1/2 corresponds to the twist proposed in Refs. 9 and 10. For

u = 1, it follows from Refs. 17 and 18 that FL,u=1 is identical to the Jordanian

twist

F1 = exp

(
−D ⊗ ln

(
1 +

1

κ
P

))

=

∞∑
l=0

(
−D
l

)
⊗
(
P

κ

)l
. (8)

Hence, the family of twists FL,u interpolates between twists F0 and F1.

Note that from [P,D] = P , it follows that DP = P (D − 1), and generally

f(D)P = Pf(D − 1) , (9)

f(D)Pm = Pmf(D −m) . (10)

Another family of twists induced with a 1-cochain ωR = exp
(
−uκPD

)
is17

FR,u = e
u
κ (PD⊗1+1⊗PD) e− ln(1− 1

κP)⊗D e−∆(uκPD) . (11)

These twists satisfy the normalization and cocycle condition.

The corresponding deformed Hopf algebra is given by

∆FR,u(pµ) = FR,u∆pµF−1
R,u

=
pµ ⊗

(
1 + u

κP
)

+
(
1− 1−u

κ P
)
⊗ pµ

1⊗ 1 + u(1−u)
κ2 P ⊗ P

, (12)

∆FR,u(D) = FR,u∆DF−1
R,u

=

(
1⊗ 1 +

u(1− u)

κ2
P ⊗ P

)

×

(
D ⊗ 1

1 + u
κP

+
1

1− 1−u
κ P

)
, (13)

SFR,u(pµ) = − pµ

1− 1−2u
κ P

, (14)

SFR,u(D) = −
(

1− (1− u)
P

κ

)
D

(
1− (1− 2u)Pκ
1− (1− u)Pκ

)
. (15)

For u = 0, FR,u=0 reduces to the Jordanian twist F0 and for u = 1 it was shown

in Ref. 18 that FR,u=1 = F1. Hence, the family of twists FR,u interpolates between

two Jordanian twists F0 and F1.

We point out that for u = 1/2, F−1
R,u=1/2 = F−1

GZ, where F−1
GZ is the twist

proposed in Ref. 11, Theorem 2.20. Hence, the twist FR,u=1/2 is given by (11) and

satisfies the normalization and cocycle condition automatically, as it is obtained as
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the cochain twist of a normalized 2-cocycle. It was shown in Ref. 18 that the twist

F−1
R,u can be written as

F−1
R,u =

∞∑
k,l=0

(u− 1)k
(
P

κ

)k(
D

l

)
⊗
(
u

κ
P

)l(
D

k

)
. (16)

Starting with

F−1
R,u = e∆(uκPD) e−∆(uκDP ) F−1

L,u e
u
κ (DP⊗1+1⊗DP ) e−

u
κ (PD⊗1+1⊗PD) , (17)

and using (see also Eq. (39) in Ref. 17)

exp

(
u

κ
PD

)
exp

(
−u
κ
DP

)
= 1 +

u

κ
P , (18)

we find

F−1
R,u = F−1

L,u

1

1⊗ 1 + u(1−u)
κ2 P ⊗ P

. (19)

Note that for u = 1, FL,u=1 = FR,u=1.

3. Two-Parameter Family of Jordanian Twists and

Relations between Them

More generally, we can define a two-parameter family of twists Fw,u, with cobound-

ary twist ωw,u = exp
(
−uκ (D + w)P

)
Fw,u = exp

(
u

κ
((D + w)P ⊗ 1 + 1⊗ (D + w)P )

)
× exp

(
− ln

(
1− P

κ

)
⊗D

)
exp

(
−∆

(
u

κ
(D + w)P

))
. (20)

For w = 1 it coincides with FR,u and for w = 0 with FL,u. Let us use relation (18).

For u = 1, it yields

e
P
κD e−D

P
κ = e

1
κ (DP+P )e−D

P
κ = eln(1+P

κ ) . (21)

Generalizing this relation for arbitrary w and using the BCH formula, it follows:

exp

(
D
P

κ
+ w

P

κ

)
exp

(
−DP

κ

)
= exp

(
w ln

(
1 +

P

κ

))
=

(
1 +

P

κ

)w
. (22)

After rescaling P → uP , D → D, w → w, it follows:

exp

(
u

κ
(D + w)P

)
exp

(
−u
κ
DP

)
=

(
1 +

u

κ
P

)w
. (23)

2050034-6



April 16, 2020 8:35 IJMPA S0217751X20500347 page 7

Interpolations between Jordanian twists

Using the above identity, the relation between Fw,u and Fw=0,u = FL,u, one gets

F−1
w,u = ∆

(
1 +

u

κ
P

)w
F−1
L,u

1(
1⊗ 1 + u

κP ⊗ 1
)w(

1⊗ 1 + 1⊗ u
κP
)w , (24)

FL,uF−1
w,u = ∆FL,u

(
1 +

u

κ
P

)w(
1

1⊗ 1 + u
κP ⊗ 1

)w(
1

1⊗ 1 + 1⊗ u
κP

)w

=

(
1

1⊗ 1 + u(1−u)
κ2 P ⊗ P

)w
. (25)

Hence,

F−1
w,u = F−1

L,u

(
1

1⊗ 1 + u(1−u)
κ2 P ⊗ P

)w
. (26)

The same relations follow from the definition of the star product and the methods

in Refs. 31 and 32. In the limit u→ 0, F−1
w,u=0 = F−1

0 , and for u = 1

F−1
w,u=1 = F−1

1 , ∀w ∈ R . (27)

Hence, the above one-parameter family of twists Fw,u is identically equal to the

simple Jordanian twist F1, generalizing the results from Secs. 2 and 3. Note that

for u = 1/2 twists Fw,u=1/2 are r-symmetric in the first order in 1/κ for all values

of w.

The quantum R-matrices are

Rw,u =

(
1⊗ 1 +

u(1− u)

κ2
P ⊗ P

)w
RL,u

(
1⊗ 1 +

u(1− u)

κ2
P ⊗ P

)−w
. (28)

Note that the classical r-matrix does not depend on the parameters w and u.

r =
1

κ
(D ⊗ P − P ⊗D) . (29)

4. Twisted Coalgebra, Star Product and Realizations

4.1. Twisted coalgebra sector

The corresponding Hopf algebra is defined with

∆Fw,u(pµ) = ∆FL,upµ , (30)

SFw,u(pµ) = SFL,u(pµ) for arbitrary w , (31)

∆Fw,u(D) =

(
1⊗ 1 +

u(1− u)

κ2
P ⊗ P

)w
∆FL,u(D)

×
(

1⊗ 1 +
u(1− u)

κ2
P ⊗ P

)−w
, (32)

2050034-7
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SFw,u(D) = −

(
1− 1−2u

κ P

1 + u
κP

)1−w(
1− 1− u

κ
P

)w
D

×

(
1− 1−2u

κ P

1− 1−u
κ P

)w(
1 +

u

κ
P

)1−w

. (33)

Note that

SFw,u=0(D) = −
(

1− P

κ

)
D , ∀w , (34)

SFw,u=1(D) = −D
(

1 +
P

κ

)
, ∀w . (35)

4.2. Coordinate realizations of the κ-Minkowski space time and

star product

Let us define the Heisenberg(–Weyl) algebra generated by commutative coordinates

xµ and the corresponding momenta pµ, satisfying

[xµ, xν ] = 0 , [pµ, pν ] = 0 , [pµ, xν ] = −iηµν . (36)

The Heisenberg algebra acts on the space of functions f(x) = f({xµ}) of the com-

mutative coordinates, where xµ act by multiplication and the action of generators

pµ and dilatation operator D = ixµpµ is given by

(pµ . f)(x) = −i∂f(x)

∂xµ
, (37)

(D . f)(x) = xµ
∂f(x)

∂xµ
. (38)

The subalgebra of coordinates becomes noncommutative due to a twist deforma-

tion, replacing the usual multiplication with star product multiplication. This star

product is associative, because the twist Fw,u satisfies the 2-cocycle condition.

When the functions are exponentials eikx and eiqx, we find their star product

eikx ∗ eiqx = eiDµ(k,q)xµG(k, q) , (39)

where

Dµ(k, q) =
kµ
(
1 + u

κ (v · q)
)

+
(
1− 1−u

κ (v · k)
)
qµ

1 + u(1−u)
κ2 (v · k)(v · q)

, (40)

G(k, q) =

(
1 +

u(1− u)

κ2
(v · k)(v · q)

)−w
, (41)

and kx = kαxα, qx = qαxα, v · k = vαkα, v · q = vαqα. Results (39)–(41) follow also

from the methods in Refs. 31 and 32.

2050034-8



April 16, 2020 8:35 IJMPA S0217751X20500347 page 9

Interpolations between Jordanian twists

Directly from the twist Fw,u, we also calculate the realizations of the noncom-

mutative coordinates x̂µ in terms of the Heisenberg algebra generators,

x̂µ = m
[
F−1
w,u(.⊗ 1)(xµ ⊗ 1)

]
=

(
xµ + ivµ

1− u
κ

D

)(
1 +

u

κ
P

)
+ iw

u(1− u)

κ2
vµP , (42)

where m is the multiplication map m : a⊗ b 7→ ab of the Heisenberg algebra. These

realizations are generalizations of those discussed in Refs. 33–37.

In the case u = 0, x̂µ = xµ + i
κvµD and in the case u = 1, x̂µ = xµ

(
1 + 1

κP
)
.

Note that for u = 0 and u = 1 realizations do not depend on w. Noncommutative

coordinates x̂µ, (42), generate the κ-Minkowski space–time and satisfy

[x̂µ, x̂ν ] =
i

κ

(
vµx̂ν − vν x̂µ

)
, (43)

[pµ, x̂ν ] =

(
−iηνµ +

i

κ
vν

1− u
κ

pµ

)(
1 +

u

κ
P

)
. (44)

Note that the term in x̂µ proportional to w does not influence the commutation

relations for [x̂µ, x̂ν ] and [pµ, x̂ν ].

4.3. Real forms of Jordanian deformations

For physical applications it is important to address the question if the symmetry

Hopf algebras can be endowed with (compatible) ∗-structures. Hopf ∗-algebras are

Hopf algebras with an involution a 7→ a∗ satisfying identities, needed to treat

unitarity and hermiticity in physical applications. In our case, to construct the

∗-involution, we start with P ∗ = P , D∗ = −D and find

(Fw,u)∗⊗∗ = F−1
w,u

(
1⊗ 1 +

u(1− u)

κ2
P ⊗ P

)2w−1

(45)

and (
SFw,u(g)

)∗
= SF(1−w),(1−u)(g∗)

∣∣
−κ , ∀g . (46)

For w = 1/2, it follows: (
F1/2,u

)∗⊗∗
= F−1

1/2,u , (47)(
SF1/2,u(D)

)∗
= SF1/2,(1−u)(D∗)

∣∣
−κ . (48)

Hence the corresponding twist is unitary for w = 1/2, u ∈ R and also for u = 0,

u = 1 and for arbitrary w.

Generally, the twist Fw,u is not unitary. If one wants to obtain a Hopf ∗-algebra

structure on the deformation, there is a construction4 provided the condition

(S ⊗ S)(F)∗⊗∗ = Fτ , (49)

2050034-9
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is satisfied, where Fτ denotes the flipped (transposed) twist F . In our case, for

Fw,u, we check

(S ⊗ S)(Fw,u)∗⊗∗ = Fw,u|−κ = Fτw,(1−u) , (50)

and the condition (49) is satisfied for u = 1/2. A whole discussion of real forms of

Jordanian deformations can be found in Sec. 4 of Ref. 17.

5. Similarity Transformations, the Poincaré Weyl Algebra and

Dispersion Relations

Let us consider the twist Fw,u, (20), for u = 0 and denote the corresponding

generators with P 0, D0, i.e.

F0 = exp

(
− ln

(
1− P0

κ

)
⊗D0

)
, (51)

leading to the following Hopf algebra

∆F0
(
p0
µ

)
= p0

µ ⊗ 1 +

(
1− P0

κ

)
⊗ p0

µ , (52)

∆F0(D0) = D0 ⊗ 1 +
1

1− 1
κP0

⊗D0 , (53)

SF0
(
p0
µ

)
= −

p0
µ

1− 1
κP0

, (54)

SF0(D0) = −
(

1− 1

κ
P0

)
D0 . (55)

We define Lorentz generators M0
µν generating the Poincaré–Weyl algebra together

with p0
µ and D0[

M0
µν ,M

0
ρσ

]
= −

(
ηµρM

0
νσ − ηµσM0

νσ + ηνρM
0
µσ − ηνσM0

µρ

)
,[

M0
µν , p

0
λ

]
= −

(
ηµλp

0
ν − ηνλp0

λ

)
,
[
D0,M0

µν

]
=
[
p0
µ, p

0
ν

]
= 0 ,

[
D0, p0

µ

]
= −p0

µ .

Then the coproduct and antipodes are

∆F0
(
M0
µν

)
= M0

µν ⊗ 1 + 1⊗M0
µν +

1

κ

vµp
0
ν − vµp0

µ

1− 1
κp

0
⊗D0 , (56)

SF0
(
M0
µν

)
= −M0

µν +
1

κ

(
vµp

0
ν − vνp0

µ

)
D0 . (57)

Generalizing Ref. 15, and using similarity transformations induced by ωw,u, we

obtain new generators

pµ = exp

(
−u
κ

(D0 + w)P0

)
p0
µ exp

(
u

κ
(D0 + w)P0

)
=

p0
µ

1− u
κP0

, (58)

2050034-10
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D = exp

(
−u
κ

(D0 + w)P0

)
D0 exp

(
u

κ
(D0 + w)P0

)
= D0

(
1− u

κ
P0

)
− u

κ
wP0 , (59)

Mµν = exp

(
−u
κ

(D0 + w)P0

)
M0
µν exp

(
u

κ
(D0 + w)P0

)
= M0

µν −
u

κ
(D0 + w)

(
vµp

0
ν − vνp0

µ

)
, (60)

and the inverse relations

p0
µ = exp

(
u

κ
(D0 + w)P0

)
pµ exp

(
−u
κ

(D0 + w)P0

)
=

pµ
1 + u

κP
, (61)

D0 = exp

(
u

κ
(D0 + w)P0

)
D exp

(
−u
κ

(D0 + w)P0

)
= D

(
1 +

u

κ
P

)
+
u

κ
wP , (62)

M0
µν = exp

(
u

κ
(D0 + w)P0

)
Mµν exp

(
−u
κ

(D0 + w)P0

)
= Mµν +

u

κ
(D + w)(vµpν − vνpµ) . (63)

Note that

(D + w)P = (D0 + w)P0 . (64)

Using (58)–(60), we express Mµν , D, pµ, in terms of M0
µν , D0, p0

µ, and calculate

the deformed coproducts of Mµν , D, pµ in terms of M0
µν , D0 and p0

µ, and then we

use (61)–(63) to reexpress the resulting coproducts in terms of Mµν , D and pµ,

obtaining

∆Fw,u(pµ) = ∆F0

(
p0
µ

1− u
κP0

)
=
pµ ⊗

(
1 + u

κP
)

+
(
1− 1−u

κ P
)
⊗ pµ

1⊗ 1 + u(1−u)
κ2 P ⊗ P

, (65)

∆Fw,u(D) = ∆F0

(
D0

(
1− u

κ
P0

)
− u

κ
wP0

)

=

(
1⊗ 1 +

u(1− u)

κ2
P ⊗ P

)w(
D ⊗ 1

1 + u
κP

+
1

1− 1−u
κ P

⊗D

)

×
(

1⊗ 1 +
u(1− u)

κ2
P ⊗ P

)1−w

, (66)
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∆Fw,u(Mµν) = ∆F0

(
M0
µν −

u

κ
(D0 + w)(vµp

0
ν − vνp0

µ)

)
= Mµν ⊗ 1 + 1⊗Mµν

− 1

κ

[
(u− 1)

vµpν − vνpµ
1 + u−1

κ P
⊗
(
D

(
1 +

u

κ
P

)
+
u

κ
wP

)

+ u

(
D + (D + w)

u− 1

κ
P

)
⊗ vµpν − vνpµ

1 + u
κP

]
, (67)

and similarly for the antipode

SFw,u(pµ) = SF0

(
p0
µ

1− u
κP0

)
= − pµ

1 + 2u−1
κ P

, (68)

SFw,u(D) = SF0

(
D0

(
1− u

κ
P0

)
− u

κ
wP0

)

= −
1 + 2u−1

κ P

1 + u
κP

D

(
1 +

u

κ
P

)

+ w
u(1− u)

κ2
P 2 2 + 2u−1

κ P(
1 + u

κP
)(

1 + u−1
κ P

) , (69)

SFw,u(Mµν) = SF0

(
M0
µν −

u

κ

(
D0 + w

)(
vµp

0
ν − vνp0

µ

))
= −Mµν −

u

κ
(D + w)

(
vµpν − vνpµ

)
− vµpν − vνpµ

κ

[
(u− 1)D + u

(u− 1)(w − 1) pκ − w
1 + u

κP

]
. (70)

in agreement with the results (30)–(33) in Sec. 4. We point out that Eqs. (65)–(70)

for u = 1 do not depend on the parameter w, in accordance with (27).

For the Poincaré algebra generated by Lorentz generators M0
µν and p0

µ, the

corresponding quadratic Casimir is (p0)2 = (p0)α(p0)α. It is also invariant under

the deformed Poincaré algebra generated with M0
µν and pµ, where pµ is related to

p0
µ (58) and p0

µ to pµ (61). Note that p2 = pαpα is not invariant under M0
µν . Hence

(p0)2 =
p2(

1 + u
κP
)2 . (71)

Momenta pµ correspond to a realization of x̂µ in terms of xµ and pµ (42). The

corresponding dispersion relation is explicitly given

E2 − p2 = m2

(
1 +

u

κ
E

)2

, (72)

2050034-12
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where m is the mass of the particle, E is the energy and p is the momentum. Note

that m2 is the value of the deformed mass Casimir.

On the other hand, the quadratic Casimir for the Poincaré algebra generated

with Mµν and pµ is p2. It is also invariant under the deformed Poincaré algebra

generated with Mµν and p0
µ, where p0

µ is related to pµ (61) and pµ to p0
µ (58). Note

that (p0)2 is not invariant under Mµν . Hence

p2 =
(p0)2(

1− u
κP0

)2 . (73)

Momenta p0
µ correspond to a realization of x̂µ expressed in terms of x0

µ, p0
µ. The

corresponding dispersion relation is explicitly given

E2 − p2 = m2

(
1− u

κ
E

)2

. (74)

In the limit κ→∞ of Eqs. (72) and (74) the standard bilinear mass shell condition

is obtained. These two families of dispersion relations are related to each other by

inverse transformation, with a parameter change u 7→ −u.

The addition of momenta kµ ⊕ qµ also depends on the parameter u

kµ ⊕ qµ =
kµ
(
1 + u

κv · q
)

+
(
1 + u−1

κ v · k
)
qµ

1 + u(1−u)
κ2 (v · k)(v · q)

. (75)

Note that dispersion relations (71), (73) and addition of momenta (75) do not

depend on parameter w, whereas the realization of x̂µ (42), the star product (39),

∆Fw,u(D) (32), ∆Fw,u(Mµν) (67), SFw,u(D) (33) and SFw,u(Mµν) (70) do depend

on w.

Concluding remarks. The physical interpretation depends on the realization of

the generators of the Poincaré–Weyl algebra.15,31,38 Particularly, the spectrum of

the relativistic hydrogen atom depending on the parameter u was investigated in

Ref. 15. Differences in realizations of NC coordinates could also lead to different

physical predictions, see e.g. Ref. 39, where dispersion relations and the time delay

parameter were investigated. Mathematically equivalent deformations, that are re-

lated to nonlinear changes of symmetry generators and linked with similarity maps,

may lead to differences in the description of physical phenomena.
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(2019).

16. S. Meljanac, D. Meljanac, A. Pacho l and D. Pikutić, J. Phys. A 50, 265201 (2017).
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