Pregled bibliografske jedinice broj: 1052007
Credit Risk Scoring in Entrepreneurship: Feature Selection
Credit Risk Scoring in Entrepreneurship: Feature Selection // Managing global transitions, 17 (2019), 4; 265-287 (međunarodna recenzija, članak, ostalo)
CROSBI ID: 1052007 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Credit Risk Scoring in Entrepreneurship: Feature Selection
Autori
Pejić Bach, M., Šarlija, N., Zoroja, J., Jaković, B., Ćosić, D.
Izvornik
Managing global transitions (1581-6311) 17
(2019), 4;
265-287
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, ostalo
Ključne riječi
data mining, credit scoring, variable selection, decision tress, classification
Sažetak
The goal of this research is to investigate the impact of different algorithms for the feature selection for the purpose of credit risk scoring for the entrepreneurial funding by the Croatian financial institution. We use demographic and behavioral data, and apply various algorithms for the development of classification model. In addition, we evaluate several algorithms for the variable selection, which are additionally based on the classification accuracy. Sequential Minimal Optimization algorithm in combination with the Class CfcSubsetEval and ConsistencySubsetEval algorithms for variable selection was the most accurate in predicting credit default, and therefore the most useful for the credit risk scoring.
Izvorni jezik
Engleski
Znanstvena područja
Ekonomija, Informacijske i komunikacijske znanosti
POVEZANOST RADA
Projekti:
HRZZ-IP-2014-09-3729 - Procesna i poslovna intelilgencija za poslovnu izvrsnost (PROSPER) (Bosilj Vukšić, Vesna, HRZZ - 2014-09) ( CroRIS)
Ustanove:
Ekonomski fakultet, Osijek,
Ekonomski fakultet, Zagreb
Profili:
Božidar Jaković
(autor)
Jovana Zoroja
(autor)
Nataša Šarlija
(autor)
Mirjana Pejić Bach
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- EconLit