Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1046154

Weak frames in Hilbert C*-modules with application in Gabor analysis


Bakić, Damir
Weak frames in Hilbert C*-modules with application in Gabor analysis // Banach journal of mathematical analysis, 13 (2019), 4; 1017-1075 doi:10.1215/17358787-2019-0021 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1046154 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Weak frames in Hilbert C*-modules with application in Gabor analysis

Autori
Bakić, Damir

Izvornik
Banach journal of mathematical analysis (2662-2033) 13 (2019), 4; 1017-1075

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Hilbert C*-module ; von Neumann algebra ; frame, Bessel sequence ; Gabor frame
(Hilbert C*-module ; von Neumann algebra ; frame ; Bessel sequence ; Gabor frame)

Sažetak
In the first part of the paper we describe the dual \ell^2(A)^{;\prime}; of the standard Hilbert C*-module \ell^2(A) over an arbitrary (not necessarily unital) C*-algebra A. When A is a von Neumann algebra, this enables us to construct explicitly a self-dual Hilbert A-module \ell^2_{;\text{;strong};};(A) that is isometrically isomorphic to \ell^2(A)^{;\prime};, which contains \ell^2(A), and whose A-valued inner product extends the original inner product on \ell^2(A). This serves as a concrete realization of a general construction for Hilbert C*-modules over von Neumann algebras introduced by W. Paschke. Then we introduce a concept of a weak Bessel sequence and a weak frame in Hilbert C*-modules over von Neumann algebras. The dual \ell^2(A)^{;\prime}; is recognized as a suitable target space for the analysis operator. We describe fundamental properties of weak frames such as the correspondence with surjective adjointable operators, the canonical dual, the reconstruction formula, etc ; first for self-dual modules and then, working in the dual, for general modules. In the last part of the paper we describe a class of Hilbert C*-modules over L^{;\infty};(I), where I is a bounded interval on the real line, that appear naturally in connection with Gabor (i.e. Weyl-Heisenberg) systems. We then demonstrate that Gabor Bessel systems and Gabor frames in L^2(\Bbb R) are in a bijective correspondence with weak Bessel systems and weak frames of translates by a in these modules over L^{;\infty};[0, 1/b], where a, b>0 are the lattice parameters. In this setting some well known results on Gabor systems are discussed and some new are obtained.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
HRZZ-IP-2016-06-1046 - Operatori na C*-algebrama i Hilbertovim modulima (OCAHM) (Bakić, Damir, HRZZ - 2016-06) ( CroRIS)

Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb

Profili:

Avatar Url Damir Bakić (autor)

Poveznice na cjeloviti tekst rada:

doi projecteuclid.org arxiv.org

Citiraj ovu publikaciju:

Bakić, Damir
Weak frames in Hilbert C*-modules with application in Gabor analysis // Banach journal of mathematical analysis, 13 (2019), 4; 1017-1075 doi:10.1215/17358787-2019-0021 (međunarodna recenzija, članak, znanstveni)
Bakić, D. (2019) Weak frames in Hilbert C*-modules with application in Gabor analysis. Banach journal of mathematical analysis, 13 (4), 1017-1075 doi:10.1215/17358787-2019-0021.
@article{article, author = {Baki\'{c}, Damir}, year = {2019}, pages = {1017-1075}, DOI = {10.1215/17358787-2019-0021}, keywords = {Hilbert C\ast-module, von Neumann algebra, frame, Bessel sequence, Gabor frame}, journal = {Banach journal of mathematical analysis}, doi = {10.1215/17358787-2019-0021}, volume = {13}, number = {4}, issn = {2662-2033}, title = {Weak frames in Hilbert C\ast-modules with application in Gabor analysis}, keyword = {Hilbert C\ast-module, von Neumann algebra, frame, Bessel sequence, Gabor frame} }
@article{article, author = {Baki\'{c}, Damir}, year = {2019}, pages = {1017-1075}, DOI = {10.1215/17358787-2019-0021}, keywords = {Hilbert C\ast-module, von Neumann algebra, frame, Bessel sequence, Gabor frame}, journal = {Banach journal of mathematical analysis}, doi = {10.1215/17358787-2019-0021}, volume = {13}, number = {4}, issn = {2662-2033}, title = {Weak frames in Hilbert C\ast-modules with application in Gabor analysis}, keyword = {Hilbert C\ast-module, von Neumann algebra, frame, Bessel sequence, Gabor frame} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font