Pregled bibliografske jedinice broj: 1046154
Weak frames in Hilbert C*-modules with application in Gabor analysis
Weak frames in Hilbert C*-modules with application in Gabor analysis // Banach journal of mathematical analysis, 13 (2019), 4; 1017-1075 doi:10.1215/17358787-2019-0021 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1046154 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Weak frames in Hilbert C*-modules with application in Gabor analysis
Autori
Bakić, Damir
Izvornik
Banach journal of mathematical analysis (2662-2033) 13
(2019), 4;
1017-1075
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Hilbert C*-module ; von Neumann algebra ; frame, Bessel sequence ; Gabor frame
(Hilbert C*-module ; von Neumann algebra ; frame ; Bessel sequence ; Gabor frame)
Sažetak
In the first part of the paper we describe the dual \ell^2(A)^{;\prime}; of the standard Hilbert C*-module \ell^2(A) over an arbitrary (not necessarily unital) C*-algebra A. When A is a von Neumann algebra, this enables us to construct explicitly a self-dual Hilbert A-module \ell^2_{;\text{;strong};};(A) that is isometrically isomorphic to \ell^2(A)^{;\prime};, which contains \ell^2(A), and whose A-valued inner product extends the original inner product on \ell^2(A). This serves as a concrete realization of a general construction for Hilbert C*-modules over von Neumann algebras introduced by W. Paschke. Then we introduce a concept of a weak Bessel sequence and a weak frame in Hilbert C*-modules over von Neumann algebras. The dual \ell^2(A)^{;\prime}; is recognized as a suitable target space for the analysis operator. We describe fundamental properties of weak frames such as the correspondence with surjective adjointable operators, the canonical dual, the reconstruction formula, etc ; first for self-dual modules and then, working in the dual, for general modules. In the last part of the paper we describe a class of Hilbert C*-modules over L^{;\infty};(I), where I is a bounded interval on the real line, that appear naturally in connection with Gabor (i.e. Weyl-Heisenberg) systems. We then demonstrate that Gabor Bessel systems and Gabor frames in L^2(\Bbb R) are in a bijective correspondence with weak Bessel systems and weak frames of translates by a in these modules over L^{;\infty};[0, 1/b], where a, b>0 are the lattice parameters. In this setting some well known results on Gabor systems are discussed and some new are obtained.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
HRZZ-IP-2016-06-1046 - Operatori na C*-algebrama i Hilbertovim modulima (OCAHM) (Bakić, Damir, HRZZ - 2016-06) ( CroRIS)
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb
Profili:
Damir Bakić
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus