Pregled bibliografske jedinice broj: 1043669
A different approach to solving linear Diophantine equations. An experimental study on using multiple strategies to solve linear Diophantine equations
A different approach to solving linear Diophantine equations. An experimental study on using multiple strategies to solve linear Diophantine equations // Scientific Conference āResearch in Mathematics Educationā
Beograd, Srbija, 2019. str. 87-102 (predavanje, meÄunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1043669 Za ispravke kontaktirajte CROSBI podrŔku putem web obrasca
Naslov
A different approach to solving linear Diophantine equations. An experimental study on using multiple strategies to solve linear Diophantine equations
Autori
LonÄareviÄ, Radomir
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Scientific Conference āResearch in Mathematics Educationā
/ - , 2019, 87-102
ISBN
978-86-6447-017-9
Skup
Znanstvena konferencija "Istraživanja u matematiÄkom obrazovanju"
Mjesto i datum
Beograd, Srbija, 10.05.2019. - 11.05.2019
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
MeÄunarodna recenzija
KljuÄne rijeÄi
metode istraživanja, znanje koje se zadržava, proceduralna fleksibilnost, linearne diofantske jednadžbe, Fareyev niz
(Research methodes, retained knowledge, procedural flexibility, linear Diophantine equations, Farey sequence)
Sažetak
The most common methods for solving the linear Diophantine equations (LDE) of form šš„+šš¦= š, š, š, š ā⤠that students learn in advanced classes in primary schools are Euclid alghorithm, Euler method and solving by guessing or inspection. This paper introduces an alternative method in solving LDE of form šš„+šš¦=š, š, š, š āā¤. The LDE is solved using the properties of Farey sequence and in this paper the algorithm for solving LDE is given. In the second part of the paper an experimental study is described and the answer on the following question is given. Can using multiple strategies lead to greater gain in solving LDE, or does it lead to confusion? The experimental study was conducted on 124 seventh-grade students, who had been divided in four groups. Each group of students were acquainted with different numbers of methods for solving linear Diophantine equations. Post-test results show an interesting difference in solving LDE from group to group. Also, in this paper we present the main reasons for using the specific method to solve LDE from studentsā point of view. One year later we conducted measurement in retained knowledge and procedural flexibility and here we present our findings.
Izvorni jezik
Engleski
Znanstvena podruÄja
Matematika, Pedagogija, Obrazovne znanosti (psihologija odgoja i obrazovanja, sociologija obrazovanja, politologija obrazovanja, ekonomika obrazovanja, antropologija obrazovanja, neuroznanost i rano uÄenje, pedagoÅ”ke discipline)