Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1040504

Domain Adaptation for Machine Translation Involving a Low-Resource Language: Google AutoML vs. from-scratch NMT Systems


Šoštarić, Margita; Pavlović, Nataša; Boltužić, Filip
Domain Adaptation for Machine Translation Involving a Low-Resource Language: Google AutoML vs. from-scratch NMT Systems // Translating and the Computer 41 / Esteves-Ferreira, João ; Macan, Juliet Margaret ; Mitkov, Ruslan ; Stefanov, Olaf-Michael (ur.).
Ženeva: Editions Tradulex, 2019. str. 113-124 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 1040504 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Domain Adaptation for Machine Translation Involving a Low-Resource Language: Google AutoML vs. from-scratch NMT Systems

Autori
Šoštarić, Margita ; Pavlović, Nataša ; Boltužić, Filip

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Translating and the Computer 41 / Esteves-Ferreira, João ; Macan, Juliet Margaret ; Mitkov, Ruslan ; Stefanov, Olaf-Michael - Ženeva : Editions Tradulex, 2019, 113-124

ISBN
978-2970-10957-0

Skup
Translating and the Computer (TC41 2019)

Mjesto i datum
London, Ujedinjeno Kraljevstvo, 21.11.2019. - 22.11.2019

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
machine translation, domain adaptation, low-resource language, neural machine translation

Sažetak
Despite the advances in machine translation (MT) made with neural models, adaptation of such systems for specialist domains is challenging. The problem is heightened for low-resource languages. Additionally, the computational resources and expertise needed to train neural models present barriers for smaller translation companies and freelancers, for whom paid but affordable customization services might present a viable solution. One such service, Google Cloud AutoML, is here compared to domain adaptation of neural MT systems trained from scratch using OpenNMT, an open-source MT toolkit. The from-scratch systems are trained on a larger out-of-domain and a smaller in-domain dataset comprised of medical texts. The same indomain data are used to customize Google Translate. System performance is compared using automatic and human evaluation. The resources, skills, costs and time necessary to set up the examined systems are discussed.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo, Informacijske i komunikacijske znanosti, Filologija



POVEZANOST RADA


Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb,
Filozofski fakultet, Zagreb

Profili:

Avatar Url Nataša Pavlović (autor)

Citiraj ovu publikaciju:

Šoštarić, Margita; Pavlović, Nataša; Boltužić, Filip
Domain Adaptation for Machine Translation Involving a Low-Resource Language: Google AutoML vs. from-scratch NMT Systems // Translating and the Computer 41 / Esteves-Ferreira, João ; Macan, Juliet Margaret ; Mitkov, Ruslan ; Stefanov, Olaf-Michael (ur.).
Ženeva: Editions Tradulex, 2019. str. 113-124 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Šoštarić, M., Pavlović, N. & Boltužić, F. (2019) Domain Adaptation for Machine Translation Involving a Low-Resource Language: Google AutoML vs. from-scratch NMT Systems. U: Esteves-Ferreira, J., Macan, J., Mitkov, R. & Stefanov, O. (ur.)Translating and the Computer 41.
@article{article, author = {\v{S}o\v{s}tari\'{c}, Margita and Pavlovi\'{c}, Nata\v{s}a and Boltu\v{z}i\'{c}, Filip}, year = {2019}, pages = {113-124}, keywords = {machine translation, domain adaptation, low-resource language, neural machine translation}, isbn = {978-2970-10957-0}, title = {Domain Adaptation for Machine Translation Involving a Low-Resource Language: Google AutoML vs. from-scratch NMT Systems}, keyword = {machine translation, domain adaptation, low-resource language, neural machine translation}, publisher = {Editions Tradulex}, publisherplace = {London, Ujedinjeno Kraljevstvo} }
@article{article, author = {\v{S}o\v{s}tari\'{c}, Margita and Pavlovi\'{c}, Nata\v{s}a and Boltu\v{z}i\'{c}, Filip}, year = {2019}, pages = {113-124}, keywords = {machine translation, domain adaptation, low-resource language, neural machine translation}, isbn = {978-2970-10957-0}, title = {Domain Adaptation for Machine Translation Involving a Low-Resource Language: Google AutoML vs. from-scratch NMT Systems}, keyword = {machine translation, domain adaptation, low-resource language, neural machine translation}, publisher = {Editions Tradulex}, publisherplace = {London, Ujedinjeno Kraljevstvo} }




Contrast
Increase Font
Decrease Font
Dyslexic Font