Pregled bibliografske jedinice broj: 1034266
Data quality in the context of longitudinal research studies
Data quality in the context of longitudinal research studies // 7th International Conference The Future of Information Sciences INFuture2019: knowledge in the digital age : proceedings / Bago, Petra ; Hebrang Grgić, Ivana ; Ivanjko, Tomislav ; Juričić, Vedran ; Miklošević, Željka ; Stublić, Helena (ur.).
Zagreb: Odsjek za informacijske i komunikacijske znanosti Filozofskog fakulteta Sveučilišta u Zagrebu, 2019. str. 98-104 doi:10.17234/INFUTURE.2019.12 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1034266 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Data quality in the context of longitudinal
research studies
Autori
Carić, Tonko ; Kocijan, Kristina
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
7th International Conference The Future of Information Sciences INFuture2019: knowledge in the digital age : proceedings
/ Bago, Petra ; Hebrang Grgić, Ivana ; Ivanjko, Tomislav ; Juričić, Vedran ; Miklošević, Željka ; Stublić, Helena - Zagreb : Odsjek za informacijske i komunikacijske znanosti Filozofskog fakulteta Sveučilišta u Zagrebu, 2019, 98-104
Skup
7th International Conference The Future of Information Sciences (INFuture 2019)
Mjesto i datum
Zagreb, Hrvatska, 21.11.2019. - 22.11.2019
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
data quality ; quality assurance ; data collection ; research data ; longitudinal study
Sažetak
This paper discusses the concept of data quality in the context of longitudinal research. By deconstructing quality assurance process and data collection strategies through a case study of the “Croatian Birth Cohort Study“, we try to define causes and sources of poor data quality in the context of longitudinal studies. Besides the problems discussed throughout the known literature (panel conditioning, sample attrition, recall bias, temporal and financial demands), we introduce singlesource problems, multi-source problems, security problems, design questionnaire problems and QA workflow problems as important aspects in the domain of the possible sources of errors. Additionaly, we propose models for eliminating the errors through prevention and detection in order to improve data quality.
Izvorni jezik
Engleski
Znanstvena područja
Informacijske i komunikacijske znanosti
POVEZANOST RADA
Ustanove:
Filozofski fakultet, Zagreb,
Institut za antropologiju