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Abstract. This paper describes the use of two different deep-learning approaches 

for object detection to recognize a toy soldier. We use recordings of toy soldiers 

in different poses under different scenarios to simulate appearance of persons on 

footage taken by drones. Recordings from a bird's eye view are today widely used 

in the search for missing persons in non-urban areas, border control, animal 

movement control, and the like. We have compared the single-shot multi-box 

detector (SSD) with the MobileNet or Inception V2 as a backbone, SSDLite with 

MobileNet and Faster R-CNN combined with Inception V2 and ResNet50. The 

results show that Faster R-CNN detects small object such as toy soldiers more 

successfully than SSD, and the training time of Faster R-CNN is much shorter 

than that of SSD. 

Keywords: Object detectors, SSD, Faster R-CNN 

1 Introduction 

Convolutional neural network (CNN) [21] is a particular architecture of artificial neural 

networks, proposed by Yann LeCun in 1988. The key idea of CNN is that the local 

information in the image is important for understanding the content of the image so a 

filter is used when learning the model, focusing on the image, part by part, as a magni-

fying glass. The practical advantage of such approach is that CNN uses fewer parame-

ters than fully-connected neural networks, which significantly improves learning time 

and reduces the amount of data needed to train the model.  

Recently, after AlexNet[22] popularized deep neural networks by winning ImageNet 

competitions, convolutional neuronal networks have become the most popular model 

for image classification and object detection problems. Image classification predicts the 

existence of a class in a given image based on a model that is learned on a set of labeled 

images. There are several challenges associated with this task, including differences 

between objects of the same class, similarities between objects of different classes, ob-

ject occlusions, different object sizes, various backgrounds. The appearance of an ob-

ject on the image might change due to lighting conditions, position (height, angle) of 

the camera and distance from the camera and similar [19]. The detection of an object 

beside the prediction of the class to which the object belongs, provides information 

about its location in the image, so the challenge is to solve both the classification and 

location task. The detected object is most often labeled with the bounding box [23], but 
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there are also detectors that segment objects at the pixel level and mark the object using 

its silhouette or shape [14, 5]. 

Some of today's most widely used deep convolution neural networks are Faster R-

CNN, RFCN, SSD, Yolo, RetinaNet. These networks are unavoidable in tasks such as 

image classification [22] and object detection [26], analysis of sports scenes and activ-

ities of athletes [6], disease surveillance [25], surveillance and detection of suspicious 

behavior [2019], describing images [17], development and management of autonomous 

vehicles in robotics [10], and the like. 

In this paper, we have focused on the problem of detecting small objects on footage 

taken by the camera of a mobile device or drones from a bird's eye view. These footages 

are today widely used when searching for missing persons in non-urban areas, border 

control, animal movement control, and the like. 

In [1], drones were used to locate missing persons in search and rescue operations. 

Authors have used HOG descriptors [8]. In [3] the SPOT system is described. It uses 

an infrared camera mounted on an Unmanned Aerial Vehicle and Faster R-CNN to 

detect villains and control animals in images. A modified MobileNet architecture was 

used in [9] for body detection and localization in the sea. Images were shot both with 

an optical camera and a multi-spectral camera. In [33] YOLO was used for detection of 

objects on images taken from the air. In [2424], three models of deep neural networks 

(SSD, Faster R-CNN, and RetinaNet) were analyzed for detection tasks on images col-

lected by crewless aircraft. The authors showed that RetinaNet was faster and more 

accurate when detecting objects. The dependence analysis of Faster R-CNN, RFCN, 

and SSD speed and precision in case of running on different architectures was given in 

[18]. 

In this paper, we will approximate the problem of detecting small objects on bird-

eye viewings or drone shots with the problem of detecting toy soldiers captured by the 

camera of a mobile device.  

The rest of the paper is organized as follows: in Section II. we will present the archi-

tecture of CNN networks, ResNet50, Inception and MobileNet with Faster R-CNN and 

SSD localization methods that are used in our research. We have examined their per-

formance on a custom toy soldiers dataset. The comparison of the detector performance 

and discussion are given in Section III. The paper ends with a conclusion and the pro-

posal for future research. 

2 Convolutional Neural Networks 

Convolutional Neural Networks (CNNs) are adapted to solve the problems of high-

dimensional inputs and inputs that have many features such as in cases of image pro-

cessing and object classification and detection. The CNN network consists of a convo-

lution layer, after which the network has been named, activation and pooling layers, 

and at the end is most often one or more fully connected layers. 

The convolution layer refers to a mathematical operator defined over two functions 

with real value arguments that give a modified version of one of the two original func-

tions. The layer takes a map of the features (or input image) that convolves with a set 
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of learned parameters resulting in a new two-dimensional map. A set of learned param-

eters (weights and thresholds) are called filters or kernels. The filter is a 2D square 

matrix, small in size compared to the image to which it is applied (equal depths as well 

as the input). The filter consists of real values that represent the weights that need to be 

learned, such as a particular shape, color, edge in order to give the network good results. 

The pooling layer is usually inserted between successive convolution layers, to re-

duce map resolution and increase spatial invariance - insensitivity to minor shifts (ro-

tations, transformations) of features in the image as well as to reduce memory require-

ments for the implementation of the network. Along with the most commonly used 

methods (arithmetic mean and maximum [44]), there are several pooling methods used 

in CNN, such as Mixed Pooling, Lp Pooling, Stochastic Pooling, Spatial Pyramid Pool-

ing and others [13]. 

The activation function propagates or stops the input value in a neuron depending 

on its shape. There is a broader range of neuron activation functions such as linear 

activation functions, jump functions, and sigmoidal functions. The jump functions and 

sigmoidal functions are a better choice for neural networks that perform classification 

while linear functions are often used in output layers where unlimited output is required. 

Newer architectures use activation functions behind each layer. One of the most com-

monly used activation functions in CNN is the ReLU (Rectified Linear Unit). In [13], 

the activation functions used in recent works are presented: Leaky Relu (LReLU), Par-

ametric ReLU (PReLU), Randomized ReLU (RReLU), Exponential Linear Unit (ELU) 

and others. 

A fully connected layer is the last layer in the network. The name of the fully con-

nected layer indicates its configuration: all neurons in this layer are linked to all the 

outputs of the previous layer. Fully connected layers can be viewed as special types of 

convolution layers where all feature maps and all filters are 1 x 1. 

Network hyperparameters are all parameters needed by the network and set before 

the network provides data for learning [2]. The hyper-parameters in convolution neural 

networks are learning rate, number of epochs, network layers, activation function, ini-

tialization weight, input pre-processing, pooling layers, error function. 

Selecting the CNN network for feature extraction plays a vital role in object detec-

tion because the number of parameters and types of layers directly affect the memory, 

speed, and performance of the detector. In this paper, three types of network have been 

selected for feature extraction: ResNet50, Inception, and MobileNet. 

2.1 ResNet 

ResNet50 is a 50-layer Residual Network. There are other variants like ResNet101 and 

ResNet152 also [15]. The main innovation of ResNet is the skip connection. The skip 

connection in the Fig. 1 is labeled “identity.” It allows the network to learn the identity 

function that allows passing the input through the block without passing through the 

other weight layers. This allows stacking additional layers and building a deeper net-

work, as well as overcoming the vanishing gradient problem by allowing network to 

skip through layers if it feels they are less relevant in training. Vanishing gradients often 
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occurs in deep networks if no adjustment is performed because during backpropagation 

gradient gets smaller and smaller and can make learning difficult. 

 

Fig. 1. A residual block, according to [15] 

2.2 Inception 

GoogLeNet has designed a module called Inception that approximates a sparse CNN 

with a normal dense construction, Fig. 2. The idea was to keep a small number of con-

volutional filters taking into account that only a small number of neurons are effective. 

The convolution filters of different sizes (5x5, 3x3, 1x1) were used to capture details 

on varied scales. In the versions Inception v2 and Inception v3, the authors have pro-

posed several upgrades to increase the accuracy and reduce the computational com-

plexity [28, 29].  

 

Fig. 2. Inception module, according to [28] 

2.3 MobileNet 

MobileNet is a lightweight architecture designed for use in a variety of mobile applica-

tions [16]. It filters the input channels by running a single convolution on each color 

channel instead of combining all three channels and flattening them all. 
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2.4 Faster R-CNN 

In the earlier version of R-CNN [11] and Fast R-CNN [12], region proposals are gen-

erated by selective search (SS) [31] rather than using convolutional neural network 

(CNN). The SS algorithm was the "bottleneck" in region proposal process, so in the 

Faster R-CNN a separate convolution network (RPN) is used to propose regions. The 

RPN network then checks which location contains the object. Appropriate locations 

and bounding boxes are sent to the detection network that determines the class of the 

object and returns the bounding box of that object. This kind of design has speed up the 

object detection. 

2.5 Single Shot Detector 

The Single Shot Detector (SSD) method for objects detection uses deep network that 

omits the stage of bounding box proposal and allows features extraction without losing 

accuracy. The approach assumes that potential objects can be located within the prede-

fined bounding box of different size and side ratios centered in each location of feature 

map. The network for each bounding box determines the probability measure for the 

presence of each of the possible categories and adjusts the position of the box to frame 

the object better. In order to overcome the problems inherent in the difference in object 

sizes, the network makes decisions by combining prediction from several feature maps 

of different dimensions [23]. 

3 Comparison of SSD and Faster RCNN detection performance 

on scenes of toy soldiers 

We have tested and compared the accuracy of the object detector for a class of person 

(toy soldier) at different scene configurations, changing the number of object, their po-

sition, background complexity and lighting conditions. The goal is to select the appro-

priate model for future research on the detection of missing persons in rescue opera-

tions. 

We used publicly available pre-trained models with corresponding weights learned 

on the Microsoft's common object and context (COCO) dataset [7] by transfer learning 

and fine-tune the model parameters on our data set. 

We used the Tensorflow implementation [30] of the CNN model and the Python 

programming language in the Windows 10 x64 environment. All models were trained 

on a laptop with the i5-7300HQ CPU and the Ge-Force GTX 1050Ti 4GB GPU. The 

number of epochs and the training time differs among models and depends on loss. The 

parameters of each model have not been changed and were equal to the parameters of 

the original model. 
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3.1 Data Preprocessing 

The data set contains 386 images shot by a mobile device camera (Samsung SM-

G960F) at a 2160x2160px resolution, without using a tripod. Each image contains mul-

tiple instances of toy soldiers, taken under different angles and different lighting con-

ditions with a different background type from a uniform to complex (such as grassy 

surfaces). The images are divided into a learning and test set in a cutoff of 80:20, and 

their resolution is reduced to 720x720px. In total, there are 798 toy soldiers in the im-

ages, of which 651 are in learning set and 147 in test. 

The LabelImg tool was used to plot bounding box and create responsive XML files 

with stored xmin, xmax, ymin, ymax position for each layout. Images and correspond-

ing XML files are then converted to TFRecord files that are implemented in the Ten-

sorflow environment. TFRecord files merge all the images and notes into a single file, 

thus reducing the training time by eliminating the need of opening each file. 

3.2 Methods 

SSD with MobileNet 

This method uses SSD for detection while the MobileNet network is used as a feature 

extractor. The output of MobileNets is processed using the SSD. We have tested the 

detection results of two versions of the MobileNet network (V1 and V2), referred to as 

ssd_mobilenet_v1 and ssd_mobilenet_v2. Both networks were pre-trained (ssd_mo-

bilenet_v1_coco_2018_01_28 and ssd_mobilenet_v2_coco_2018_03_29) on COCO 

dataset of 1.5 million objects (80 categories) in 330,000 images. We trained the network 

using toy soldier’s images width bounding box as input to the training algorithm. The 

network parameters include: prediction dropout probability 0.8, kernel size 1 and a box 

code size set to 4. The root mean square propagation optimization algorithm is used for 

optimizing the loss function with learning rate of 0.004 and decay factor 0.95. At the 

non-maximum suppression part of the network a score threshold of 1 × 10−8 is used 

with an intersection of union threshold of 0.6, both the classification and localization 

weights are set to 1. Ssd_mobilenet_v1 was trained for 17,105 steps and ssd_mo-

bilenet_v2 for 10,123 steps. 

SSD with Inception-V2 

The combination of SSD and Inception-V2 is called SSD-Inception-V2. In this case, 

SSD is used for detection while Inception-V2 extracts features. We trained the network 

using predefined ssd_inception_v2_coco_2018_01_28 weights. The training process 

uses similar hyperparameters as SSD with MobileNet, except in this case of the kernel 

size that is set to 3. The network was trained for 6,437 steps. 

SSDLite with MobileNet-V2 

SSDLite [27] is a mobile version of the regular SSD, so all regular convolutions with 

detachable convolutions are replaced (depthwise followed by 1 × 1 projection) in SSD 

layers. This design is in line with the overall design of MobileNet and is considered to 
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be much more efficient. Compared to SSD, it significantly reduces the number of pa-

rameters and computing costs. We trained the network using pre-trained ssdlite_mo-

bilenet_v2_coco_2018_05_09 weights. Similar hyperparameters were used as before, 

and the network was trained for 14,223 steps. 

 

Faster R-CNN with ResNet50 

Faster R-CNN detection involves two phases. The first phase requires a region proposal 

network (RPN) that allows simultaneous prediction of object anchors and confidence 

(objectiveness) from some internal layers. For this purpose, a residual network with a 

depth of 50 layers (ResNet50) is used. The grid anchor size was 16 x 16 pixels with 

scales [0.25, 0.5, 1.0, 2.0], a non-maximum-suppression-IoU threshold was set to 0.7, 

the localization loss weight to 2.0, objectiveness weight to 1.0 with an initial crop size 

of 14, kernel size was 2 with strides set to 2. The second phase requires information 

from the first phase to predict the class label and the bounding box. We trained the 

network using pre-trained faster_rcnn_resnet50_coco_2018_01_28 weights. The IoU-

threshold for prediction score was set to 0.6; the momentum (SGD) optimizer for opti-

mizing the loss functions has initial learning rate set to 0.0002 and momentum value 

0.9. The network was trained for 12,195 steps. 

Faster R-CNN with Inception-V2 

Faster R-CNN uses the Inception V2 feature extractor to get features from the input 

image. The middle layer of the Inception module uses the RPN network component to 

predict the object anchor and confidences. As in previous cases, the network was 

trained with pre-trained fast-er_rcnn_inception_v2_coco_2018_01_28 weights. Simi-

lar hyperparameters were used as in case of Faster R-CNN with ResNet50 and the 

learning process lasted for 33,366 steps. 

3.3 Results and discussion 

We compared the results of the SSD model and the Faster RCNN object detector based 

on CNNs on our toy soldiers test set concerning mean average precision (mAP) [32]. 

A detection is considered as true positive when more than half of the area belonging to 

the soldier is inside the detected bounding box. Detectors performance are also evalu-

ated in terms of recall, precision and F1 score. 

 𝐹1 =
2∙Recall ∙Precision

(Recall+Precision)
 (1) 

Fig. 3. shows a comparison of results of models that were additionally learned on 

our learning set with original models trained on the COCO dataset. The results show a 

significant increase in the average precision of all models after training on our dataset. 

The best results of over 96% were achieved with the faster_rcnn network. The imple-

mentation of faster_rcnn with Resnet50 proved to be somewhat successful than archi-

tecture with the Inception Network. Faster_rcnn has also shown the best classification 
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results concerning F1 score and Recall [19], Fig. 4. All classification result of all mod-

els in terms of precision, recall and F1 score are shown in Fig. 4. 

 

Fig. 3. Comparison of the evaluation result of the toy soldier's detection 

 

Fig. 4. Comparison of the results of the trained model detection concerning the F1, Precision 
and Recall metrics 

Fig. 5. shows the time required to train the model on our learning set. The least 

amount of time was needed to learn the faster_rcnn model. The longest, more than 3.5 

times longer than learning the fast_rcnn model, was needed to learn the ssdlitle-mo-

bilenet_v2 model. 
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Fig. 5. Comparison of model learning time on the custom dataset 

Model performances are additionally presented in two scenarios: simple and com-

plex. The simple scenario has a uniform background color and up to 8 visible objects 

near the camera, which may overlap. A complex scenario is considered when the num-

ber of objects in a scene is equal to and greater than 9, away from the camera and with 

occlusions. A Fig. 6. shows an example of the detection results in the case of a simple 

scenario. The images marked A through F show the same scenarios with a uniform 

background with a wooden pattern and five soldiers in different poses such as walking 

with a gun, shooting, crawling and lying down. 

 

Fig. 6. The detection results in the case of a simple scenario 
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In all the images, the results of individual models are indicated in the following way: 

 A – ssd_mobilenet_v1,  

 B – ssd_mobilenet_v2,  

 C – ssdlite_mobilenet_v2,  

 D – ssd_inception_v2,  

 E – faster_rcnn_resnet_50,  

 F – faster_rcnn_inception_v2.  

In figure A, no soldier was detected, B has 3 of 5 true positive (TP) detections, C 

and D only one detected soldier, while E has 4 TP with one false positive (FP) detection, 

and F all positive detections with one FP. 

In the case of a uniform background with higher contrast to soldiers, as in Fig. 7. all 

models have detected with greater success in comparison to the previous case, even 

though in this example, we have a higher number of soldiers and at a greater distance. 

There were 11 soldiers on the scene, but no model detected a soldier on a tank of the 

identical color. The best results were achieved in E and F images with 10 successful 

detections, then model B with 7, and then models A and C follow. The sequence of the 

success of the model is similar to the one in the previous example. 

 
Fig. 7. The case of a uniform background with higher contrast to soldiers 

 

Fig. 8. shows a complex scene in which soldiers are partially covered with grass. 

The camera's position is not as in the previous cases from the top, but from the side. 

The models in Figures A and D did not have any detection, while B detected almost the 

entire image as a soldier. C has one positive and two false detections, E has repeatedly 
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detected the same object, but with different rectangle size and has a false detection, and 

F has an accurate, true positive detection. 

 

 

Fig. 8. A complex scene in which soldiers are partially covered with grass 

Fig. 9. shows two scenes with a camera positioned from a bird’s perspective at a 

greater distance than in earlier cases and with 8 soldiers on a uniform blue background. 

Model A detected only one soldier (Fig. 9.a) whereas B, C, and D had no detection 

(Fig. 9.b). Model E detected all soldiers (9.d), while F detects all soldiers plus three 

false detections (9.e). 

In the second scene recorded from a greater distance on the grass, Fig. 9.c and 9.f, 

only F detects one soldier out of 7 possible. Examples show that all models have prob-

lems with object detection when an object is less than 50px in height or width, espe-

cially when the contrast of the subject and background is not significant, and when the 

background is more complex than in the case of grass. 

Fig. 10 is an example of a scene with two soldiers with a cluttered background. E 

and F models detected both soldiers with a probability of detection of 100% (Fig. 10.a, 

Fig. 10.c, and Fig. 10.e), while model B detected only one soldier (Fig. 10.b, Fig. 10.d.) 

and other models failed to detect anything. Fig. 10.e shows a higher contrast between 

the soldiers and the background, but this did not help models A, B, C, D to have a 

successful detection. Fig. 10.f shows the occlusion of soldiers; however, models B, D, 

E, and F were able to detect them. 
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Fig. 9. Two scenes with a camera positioned from a bird’s perspective 

 
Fig. 10. A scene with a cluttered background and the occlusion of soldiers 
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4 Conclusion 

Recordings taken from the air today are used mainly in search of missing persons, in 

mountain rescue, in the control of animal movement, and the like. The ability to auto-

matically detect persons and objects on the images taken from a bird’s perspective 

would greatly facilitate the search and rescue of people or the control of people and 

animals. 

CNN networks have proven successful in classification and object detection tasks 

on general-purpose images, and in this paper, we have tested their performance in de-

tecting toy soldiers taken from the bird's eye view. On the custom dataset, we compared 

the performance of ResNet50, Inception, and MobileNet networks with Faster RCNN 

and SSD methods of localization. The analysis of the obtained results shows that Faster 

RCNN is more suitable for detection because it detects toy soldiers more successfully. 

The configuration with the Inception network is more successful than the configuration 

with ResNet50. The problem with this method is that it requires more time and compu-

tation power. 

The examples also show the background effect on detection accuracy. With a uni-

form background and higher color contrast, detection of all models is significantly suc-

cessful than in case of detection at a greater distance, on the grass, and with semi-hidden 

objects. In future work, we will try to find a way to solve this problem. 

This paper provides a promising base ground for further research in real-time detec-

tion of missing persons in search and rescue operations. We plan to investigate the fur-

ther use of different detection methods (speed, accuracy) on the android system. 
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