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Abstract—Autonomous underwater navigation presents a 
whole set of challenges to be resolved in order to become 
adequately accurate and reliable. That is particularly critical 
when human divers work in close collaboration with 
autonomous underwater vehicles (AUVs). In absence of global 
positioning signals underwater, acoustic based sensors such as 
LBL (long-baseline), SBL (short-baseline) and USBL 
(ultrashort-baseline) are commonly used for navigation and 
localization. In addition to these low-bandwidth and high 
latency technologies, cameras and sonars can provide position 
measurements relative to the vehicle which can be used as an aid 
for navigation as well as for keeping a safe working distance 
between the diver and the AUV. While optical cameras are 
highly affected by water turbidity and lighting conditions, sonar 
images often become hard to interpret using conventional image 
processing methods due to image granulation and high noise 
levels.  

This paper focuses on finding a robust and reliable sonar 
image processing method for detection and tracking of human 
divers using convolutional neural networks. Machine learning 
algorithms are making a huge impact in computer vision 
applications but are not always considered when it comes to 
sonar image processing. After presenting commonly used image 
processing techniques the paper will focus on giving an overview 
of state-of-the-art machine learning algorithms and explore 
their performance in custom sonar image dataset processing. 
Finally, the performance of these algorithms will be compared 
on a set of sonar recordings to determine their reliability and 
applicability in a real-time operation. 

Keywords— Convolutional neural networks, object detection, 
diver detection, sonar image processing 

I. INTRODUCTION 
The use of underwater robots can greatly facilitate human 

tasks and improve safety conditions in harsh and unstructured 
environments where the slightest unexpected malfunction or 
disturbance can lead to catastrophic events [1]. For an 
autonomous underwater robot to be able to monitor and assist 
the human diver it is crucial that it has the ability to accurately 
detect and track the diver. While USBL measurements can 
provide relative underwater localization, its readings are very 
sparse and delayed due to acoustic wave propagation [2] and 
thus not suitable for a real time operation. The authors in [3] 
propose combining USBL measurements with forward 
looking multibeam sonar images to improve diver detection. 
Multibeam high frequency sonar devices provide almost real-

time acoustic images with high precision and are commonly 
used in underwater positioning and object detection ([4], [5], 
[6]). Most sonar image processing techniques, including the 
ones mentioned include pattern recognition or blob detection 
and clustering and combine them with a variety of 
classification filtering methods like Extended Kalman Filter 
(EKF), Unscented Kalman Filter (UKF), Gaussian Mixture 
Model (GMM), Hidden Markov Model (HMM) etc. [7].  

Deep convolutional neural networks (CNNs) have long 
surpassed all known methods of large-scale image recognition 
and classification and are continuously keeping performance 
levels rising on all benchmark tests like ImageNet, PASCAL 
VOC and MS COCO [8]. However, the beforementioned 
benchmark datasets consist of optical images. The goals of 
this paper are to evaluate the performance of state-of-the-art 
object detection neural network architectures on forward 
looking sonar recordings and to evaluate the feasibility of 
using them in a real-time autonomous marine application. 
Several studies like [9] and [10] have been conducted in sonar-
based object classification using machine learning approaches 
which provide the probability that an object is present in the 
image. In order to track the diver’s trajectory and position 
using an AUV, a precise location inside the sonar field of view 
has to be determined. All of the proposed CNN architecture 
models were trained on the same training dataset and then 
evaluated on several validation datasets in order to measure 
their performance, computation requirements and execution 
speed.  

The main motivation for conducting this type of research 
arises from the ONR-G “ADRIATIC – Advancing Diver-
Robot Interaction Capabilities” project, one of whose main 
objectives is to develop new collaborative motion strategies 
between a human diver and an autonomous underwater 
vehicle. Diver’s limited navigation capabilities and lack of 
communication with the surface when underwater introduce 
great risk in case an emergency situation happens. Technical 
life supporting equipment failure and external environmental 
disturbance risks are commonly minimized by diving in 
groups or at least in pair with a buddy. Using the buddy diving 
system not just in technical but in recreational dives as well is 
widely accepted not just as the standard operating procedure, 
but it has largely become the code of practice and part of 
governing legislation in counties around the world [11]. 
Within the ADRIATIC project the collaboration scheme 
between the diver and the AUV envisions the robot vehicle to 
take the place of a robotic diving buddy, the prime goal being 
observing the diver and determining his physiological 
parameters such as breathing, hearth and motion rate and to 
allow the detection of critical diver states. 
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Fig. 1 Diver interacting with the BUDDY AUV, equipped with 
Soundmetrics Aris Explorer 3000 sonar 

The diver-robot cooperation research focuses on three 
main scenarios. The first scenario makes the AUV act as an 
“observer” that monitors the diver at all times by keeping at 
safe distance and anticipating any difficulties the diver may 
experience. The second scenario uses the AUV as “slave” that 
assists the diver during some activities and can perform a 
limited set of actions, and the third “guide” option navigates 
the diver to a target or point of interest. The key in making all 
three scenarios possible lies in a robust method of detecting 
the diver’s position and orientation relative to the AUV at all 
times. In addition to the diver-robot cooperation objective, the 
project explores novel human-robot communication methods 
and evaluates the feasibility of the proposed interaction 
solutions in real environment, which also requires a precise 
and reliable estimation of the diver’s pose and location. 

II. SONAR IMAGE PROCESSING 
Using optical image cameras for underwater object 

detection tasks can present a great challenge with the increase 
in distance because thicker bodies of water often introduce a 
critical decrease in visibility. Due to this reason, in many 
underwater operations where perceptual object detection and 
recognition is required regardless of the water turbidity, 
imaging sonar has been widely accepted for providing reliable 
measurements [6].  Sonar can provide perceptual imaging of 
underwater environment in low or even zero visibility 
conditions. This is particularly critical in military and defense 
operations, search for evidence and search and rescue 
operations. 

When it comes to sonar technologies, there are two types 
of sonar that can be used for object detection. Side-scan sonar 
(SSS) can provide long-range high-resolution imagery and it’s 
suitable for performing detection in vast survey areas. On the 
other hand, multibeam forward-looking sonar (FLS) can 
acquire much higher detail levels but at shorter distances [13]. 
Because of these features they are often referenced as acoustic 
cameras because they, like a video camera, produce a two-
dimensional image but using a very different geometrical 
principle. For a target like a human diver to be detected and 
the chosen detection principle the former type of sonar is 
much more suitable. FLS are constructed in a way they can 
emit a number of acoustic beams, each of whom covers a 
certain horizontal and vertical angle. Because of the different 
projection model than in an optical imaging camera, a sonar 
image often becomes hard to interpret and it usually does not 
come intuitively to a human operator to instantly define and 
recognize visual features in it. Additionally, a significant 
amount of noise is generated in the image due to the sensor’s 
physical characteristics, so the image has to be preprocessed 

in order to become useable and to determine the target 
position. 

The sonar data used to train deep neural networks used in 
this paper is acquired during the “CADDY - Cognitive 
Autonomous Diving Buddy” project validation trials during 
October 2015 and October 2016. The experimental setup 
consisted of the Soundmetrics ARIS Explorer 3000 sonar [14] 
mounted horizontally on a custom built autonomous 
underwater vehicle “BUDDY AUV”. You can find out more 
about the concept of the vehicle and its characteristics in [15]. 
The sonar uses 128 horizontal beams, each covering a 0.25° 
angle which makes up a field of view of 30° horizontally and 
15° in the vertical plane. It supports two operating modes; 
detection mode that ensonifies a 15-meter range at a frequency 
of 1.8 MHz and the identification mode with higher detail at 
ranges up to 5 meters operating at 3 MHz. 

III. CONVOLUTIONAL NEURAL NETWORK OBJECT DETECTORS 
Computer vision is one of the fields that has been 

developing rapidly thanks to deep learning. These advances in 
computer vision are enabling brand new applications of this 
technology that just were not possible or feasible a couple 
years ago. Underwater robot vision is certainly one of the 
fields that could benefit from neural network research. Thanks 
to the global tendency of opening up the artificial neural 
network programming community more and more companies 
and individuals are encouraged to contribute together in open 
source libraries, constantly competing with each other and 
making the edge of this technology move forward in a very 
fast pace. Exactly for that reason it makes sense to test out the 
current state-of-the-art network architectures and topologies 
before proceeding into building your own or making 
modifications that meet your specific needs. 

Building a deep neural network that performs object 
detection on a high-resolution image using standard fully-
connected network layers would be infeasible since the 
number of parameters escalates very quickly when every pixel 
of every channel in the image gets multiplied by its own 
weight factor in the network layer matrix. That is part of the 
reason why the convolution operation become one of the 
fundamental building blocks of any modern object detection 
neural network architecture. That way features across the 
image can share filters with the same weights and still get 
detected anywhere inside the image. How convolution 
operations work on a simple edge detection problem is very 
well explained in [12]. Combining convolution layers with 
pooling, activation and fully connected classification layers 
make the neural network able to detect lines and curves in first 
shallower layers and more complex shapes or complete 
objects in deeper layers.  

The objective of the network architectures taken into 
consideration in this paper is not just to detect if an object is 
present in the image or output the probability of its existence, 
but it is also responsible for drawing a bounding box around it 
and detecting its exact position within the image. This turns 
the classification problem into a detection with localization 
problem. Historically, object detection and localization started 
with the “sliding window” approach, where a window much 
smaller than the image size was cropped out of the image and 
passed sequentially to a neural network to make predictions. 
The process is repeated across the image to find objects, after 
which it is done all over again with larger window sizes. 
Naturally, this kind of approach resulted very computationally 



expensive. Some of the classic network examples from that 
era were LaNet-5 form 1995, AlexNet from 2012 and VGG-
16 from 2015. The solution to that problem lies in a simple 
hack where the fully connected layers of the network are 
replaced with 1x1 convolution layers which at first does not 
sound particularly useful (a 1x1 matrix operation is just 
multiplying with the same number) but it comes very useful to 
shrink the number of layers and add some non-linearity to the 
model. Some famous networks that used that principle were 
Inception or GoogleNet. In 2015, the Residual Neural 
Network (ResNet) introduced a novel architecture with 
“skipping connections” which allowed to train bigger 
networks much faster and with lower complexity. Adding 
residual blocks does not hurt the network performance as it 
acts as a “same” convolution, but this “shortcut” allows the 
gradient to be directly backpropagated to the earlier layers of 
the network. Another ground-breaking idea that made the 
detection much more accurate and faster than the sliding 
window algorithm is YOLO (You Only Look Once). The idea 
is to do a segmentation of the original image into multiple 
grids implemented convolutionally, where each cell outputs a 
prediction vector and associates that prediction to an anchor 
box. The cell with the highest confidence score makes the 
prediction for an anchor box shape with the highest probability 
(Non-max Suppression). In this way the model does not 
process segments of the picture separately but processes the 
whole image at once which is a very powerful idea.  

As the scope of this paper we chose to give an overview of 
five different CNN architectures and show how they perform 
on the same training and test data. The first network 
architecture we tested was the VGG-16 (or VGGNet) which 
was developed in 2014 by Zisserman and Simonyan [18] and 
it originally consisted of 16 layers in a very uniform structure 
made of 3x3 convolutional filters, pooling and fully connected 
layers. YOLO v2, also referenced as YOLO9000 is the second 
version of the YOLO architecture and was published by 
Redmon and Farhadi in 2017 [19] and it introduced major 
improvements to the original YOLO architecture to make it a 
better, faster and stronger object detection algorithm than the 
main rival at the time, Faster R-CNN. Some of the 
improvements it introduced are a higher resolution classifier, 
batch normalization, multi scale training etc. It featured 19 
convolutional layers, 5 pooling layers and a Softmax 
classification layer. YOLO v2 was soon surpassed by its third 
version, YOLO v3, a much deeper network featuring 53 
mainly 3x3 and 1x1 convolutional layers and a couple more 
incremental improvements. One of them was the use residual 
blocks or previously mentioned “shortcut connections”, which 
allowed for faster training of the deeper network, but it also 
introduced the logistic classifier instead of the Softmax 
function, Feature Pyramid Networks (FPN) and more. When 
exploring further real-time operation options, the Tiny-YOLO 
v3 network was considered. Essentially, it is a lighter version 
of the YOLO v3 architecture limited to just 21 layers that uses 
downsampling in the pooling layers to reduce matrix 
dimensions in early layers. Taking everything into 
consideration, it is intended to be a tradeoff between 
performance and speed and more suited to a small to middle 
size dataset with faster execution on limited hardware 
resources. Finally, the most up-to-date model in the moment 
of writing this paper that was tested was the newest 
modification to the architecture and currently the highest 
scoring YOLO architecture, the YOLO v3-SPP. This 
configuration introduces a dense connection and Spatial 

Pyramid Pooling (SPP) principle to strengthen the feature 
extraction and alleviate the vanishing-gradient problem as 
well as concatenate multi-scale local region features. As a 
result, the network is able to learn features more 
comprehensively and it is currently achieving the highest 
mAP scores on PASCAL-VOC and UA-DETRAC datasets.  

IV. TRAINING SET COMPOSITION 
As with any deep learning project, composing and 

preparing a good dataset is always the most important task. 
The more images with the target shown from different sides, 
relative sizes, angles of rotation, tilt, illumination etc., the 
more chance the network is going to have at detecting the 
object in different real-life conditions. 

Sonar images used to train the networks in this paper were 
acquired by extracting frames from the Soundmetrics Aris 
Explorer 3000 video recordings. The frames come in a native 
resolution of 350x658 pixels and all the CNN input filter 
matrices are modified to fit as close as possible to that 
resolution in order to increase the network resolution. That 
should allow for detection of smaller objects, meaning there 
should be a higher possibility of detecting the diver further 
away in the sonar field of view. The base of the dataset 
consists of 2000 images for the training set and 200 (10%) 
images for the test set. The images are chosen from random 
non-sequential frames of different sonar recording to 
maximize the diversity of the training dataset and to prevent it 
from overfitting. 

The images in the dataset are recorded in seawater during 
experimental trials in Biograd na Moru, Croatia, with the diver 
recorded by the AUV form different perspectives, in different 
body poses and orientations, at different distances from the 
vehicle. An example of how the sonar recordings of the diver 
look can be seen in Figure 2. Including all perspective 
combinations is crucial for the network to do inference 
properly and to adapt to various conditions it might encounter 
on validation trials. Although 2000 images might not seem a 
lot considering computer vision algorithms use tens of 
thousands of images for training, it is enough to give an 
analysis of the network performance and speed, especially 
considering the fact that we are training the network to detect 
only one class of objects. The dataset is further expanded 
using data augmentation techniques. Considering we did not 
post the requirement to distinguish left from right sides on the 
detected objects, random scaling, translations and x-axis 
mirroring is done to multiply the dataset and prevent it to 
overfit early, as well as randomly adjusting exposure, hue and 
saturation. It is also important to include negative samples that 
do not contain any of the objects we wish to detect in the 
dataset without any bounding box labels. Authors in [16] 
suggest using as many negative samples as there are images 
with positive labeled objects. All of the images from the 
training and the test dataset containing the diver in the sonar 
image were labeled manually using a standard Python labeling 
tool. The tool generates a text file for each of the images 
containing the label class number of the object in the bounding 
box, x and y coordinates of the bounding box center, relative 
to the left bottom corner, and the width and height of the 
bounding box, all scaled to numbers between 0 and 1 (1 being 
the size of the image in the given axis). Once prepared in this 
manner the labeled bounding box is considered to be the 
“ground truth” and the dataset is ready to start the training 
process. 



 
Fig. 2 Examples of sonar images acquired using Aris Explorer 3000 in 
seawater experimental trials. 

Using widely available pre-trained model weights for 
starting the network training process resulted in the best 
convergence times and a faster learning process than any other 
option. Although the used model weights were trained on the 
COCO dataset, that does not present any similarities with the 
type of images we want to train on, the network adapted these 
weights much faster than when just using random or zero 
weights. 

V. TRAINING 
During the training process the deep neural networks learn 

the parameters of the model, which for a CNN are the filter 
weight factor matrices with the corresponding bias factors. 
The training process tries to minimize the classification error 
on the test data and repeats the process iteratively on batches 
of images randomly chosen from the training dataset. The 
batch sizes used for training the networks in this paper was 64 
images at once. All the object detection training was 
performed on a PC running the Nvidia CUDA toolkit, which 
allows parallel distribution of computing on two graphics 
processing units Nvidia GTX 1080 Ti. The training process is 
sped-up further using the OpenCL framework which enables 
the learning to be executed on the central processing unit as 
well, in our case and Intel Core i9 9900k with 8 cores and 16 
threads running at frequencies up to 5 GHz.  

The outputs of the CNN are very similar to the described 
annotation labels data we used to feed the neural network to 
learn, and it consists of coordinates of the center of the 
predicted bounding box, its width and height relative to the 
size of the image and the class the object belongs to. Along 
with the class prediction, the network also outputs the 
confidence score for that particular prediction, or the 
probability that the detected object belongs to a certain class 
for a given intersection over union threshold. One set of 
mentioned parameters are output for each of the objects found 
in the image.  

  
Fig. 3 Precision metrics definitions in object detection using bounding boxes 
– Intersection over Union, Precision and Recall. 

Before we start analyzing the results, let’s first explain the 
evaluation metrics used to compare different deep neural 
network architectures. Considering we are dealing with 

bounding boxes and object detection rather than just image 
classification, precision and recall terms are going to have 
slightly different meanings. In a classification problem 
precision would be defined as the ratio between true positive 
classifications over the sum of true positive and false positive 
classifications. As we are working with bounding boxes, it 
sounds reasonable to express precision as the ratio of the 
intersection surface between the labeled ground truth 
bounding box and the one the network actually detected and 
the surface of the detected box itself. Similarly, recall in a 
classification problem is defined as the ratio between true 
positive classifications over the sum of true positive and false 
negative classifications. In the bounding box surface analogies 
that would translate into the ratio between the intersection 
surface of the labeled and the detected bounding box and the 
ground truth bounding box surface. Mean average precision 
(mAP) is the default metric of a network precision in object 
detection and it is defined as the average value of 11 points on 
the precision-recall curve for each possible detection threshold 
averaged across all classes [17]. Another relevant evaluation 
metric is the intersection over union (IoU) value, which is 
defined as the area of overlap between the detected bounding 
box and the ground truth and area of their union. The IoU 
metric is particularly useful when adjusting the detection 
thresholds. All three of these metrics’ definitions can be more 
easily understood when displayed graphically as in Figure 3. 

For each experiment one type of CNN was trained using 
the same dataset and equivalent parameters adjusted to its 
specific architecture to get the best results. The learning curve 
varied broadly between different network models as expected, 
considering different depths and network parameters. 
However, all the networks were trained until the average loss 
reached a minimum, but early enough that the model does not 
start overfitting. You can find more useful guidelines on when 
exactly to stop the training process in [16]. A typical average 
loss function curve during training can be seen in Figure 4. 
When the average loss stops decreasing by any significant 
amount with further training steps, it is time to find the point 
that gives the highest mean average precision on the test 
dataset. The lowest average loss does not necessarily 
guarantee the best performance when doing validation on new 
data as the model could have started overfitting to the training 
data. Once the model has finished training, we chose the 
weights with the highest mAP and IoU and tested them on 
previously unseen sonar video recordings to evaluate their 
performance and model inference speed. 

 
Fig. 4 Average loss curve across training iterations during Yolov2 model 
training. Indicated in the image is the “early stopping point”, where we get 
the maximum mean average precision on the test dataset 



VI. RESULTS 
As mentioned earlier in the paper, the goal of this analysis 

was to test state-of-the-art CNN architectures on sonar 
recordings to rank their performance but also evaluate the 
feasibility and robustness of using such approaches in an 
autonomous underwater application. For that reason, the 
parameters we are going to look at when ranking the networks, 
beside just precision and recall, are going to be the complexity 
of the network, execution frame rate (frames per second, FPS) 
on a given hardware setup and the number of floating-point 
operations that need to get computed in a second of inference.  

The results are reported as mAP at the IoU threshold set to 
0.5 and the detection confidence threshold of 0.25 as shown 
on Figure 5., meaning the performance measure counts the 
prediction as true positive if the intersection of the prediction 
and the ground truth bounding boxes is greater than 50% of 
their union. Because the performance metric places much 
more emphasis on the bounding box placement accuracy the 
mAP results are not extremely high (i.e. in a 90% to 100% 
region). Part of the reason to that is that it is often hard to 
determine the shape and exact borders of the bounding box 
even during dataset labeling. Flippers the diver is wearing, for 
example, can often be seen only vaguely (Figure 7) and we 
can see during inference the model is often struggling to 
predict the shape of the bounding box, but the diver body 
position gets predicted correctly nevertheless.  

In the execution speed evaluation shown on Figure 6 we 
can see that all the CNN models are outclassed by Tiny YOLO 
v3, as expected considering the fact that model is designed to 
run fast on limited hardware resources. What is interesting to 
note is that the mAP score for that same network is on par with 
YOLO v3 and YOLO v3-SPP and performed significantly 
better than YOLO v2 and VGG-16. The VGG-16 architecture 
beside achieving a low mAP score is simply not feasible to use 
in a real-time operation. The frame rate of the other networks 
on the other hand, although running on powerful hardware, is 
well above the expected sonar readings rate (Soundmetrics 
Aris Explorer 3000, used in this experiment, has a frame rate 
of up to 15 FPS). A full list of the performance indicators can 
be found in Table 1. The table features the already mentioned 
mAP, FPS, precision and recall metrics as well as BFLOPS 
(Billions of Floating-Point Operations, sometimes referenced 
as Giga FLOPS) as the measure of complexity of the model.  

 
Fig. 5 CNN architectures ranked by the Mean Average Precision score on the 
same test dataset at IoU threshold set to 0.5 and detection threshold 0.25. 

 

 
Fig. 6 Average frame rate results while performing inference on the same 
sonar video running on the hardware setup described in chapter V. CNN 
models are ranked from fastest to slowest. 

TABLE I.  CNN PERFORMANCE INDICATOR SCORES  

Model Layers mAP FPS BFLOPS Precision Recall 

VGG-16 16 50.05% 0.2-0.3 30.699 0.47 0.55 

YOLOv2 26 76.82% 56-68 34.720 0.81 0.84 

Tiny 
YOLOv3 21 83.00% 120-

190 5.571 0.89 0.85 

YOLOv3 53 84.83% 46-52 65.864 0.92 0.92 

YOLOv3-
SPP 53 83.16% 47-53 29.371 0.88 0.89 

VII. CONCLUSION AND FUTURE WORK 
Overall, modern CNN object detector architectures have 

shown some astonishing results detecting even an unusual 
custom object like a diver within a sonar recording. It is still 
not completely clear or maybe even a bit counterintuitive how 
neural networks learn to recognize features as well as they do, 
a lot of the times performing that task better than a human 
would. It is, however, certainly something to exploit to our 
benefit and it is already making a huge impact in computer 
vision in warehouse autonomous robots, self-driving cars, 
drones and many other terrestrial and areal applications. 
Although perceptual and communication technologies might 
be very different underwater, there is no reason similar 
approaches cannot be used in underwater systems and 
technologies. 

The network architectures proposed in this paper were 
originally not designed for doing inference on a single object 
or a single class of objects as we did in this test. They were 
designed to detect a large number of objects simultaneously, 
as i.e. vehicles and pedestrians on a busy street crossings, and 
to be trained in tens, hundreds or even thousands of different 
object categories (i.e. YOLO9000). The reason they were 
chosen to be tested in an underwater autonomous application 
is because they are incredibly fast in real time operation and 
they can be executed on limited hardware resources you 
would usually get in an AUV setup. Considering sonar 
recordings get updated in an order of magnitude of Hz or tens 
of Hz, we can see that some of the proposed architectures fit 
well above that frequency and show extraordinary detection 
precision results.  



 
Fig. 7 Diver detection algorithms running on different sonar recordings with 
corresponding camera frames for reference. 

Although sonar image recordings by definition do not 
provide any color information (color mapping might be added 
in post processing) we still used three channel RGB images to 
train the network models. Switching to mono-channel 
grayscale images for training could additionally speed up the 
training and inference process considering all the weight 
matrices get decreased by one dimension. The reason for not 
discarding the extra color layers is solely in demonstration and 
performance analysis purposes, considering grayscale trained 
models could not perform inference on video but just on single 
images. Future plans are to train models on one-channel 
images and perform inference sequentially on single images 
in a tracking filter which should additionally speed up the 
process, as well as decrease the on-board hardware 
requirements. Expanding the sonar database is one of the main 
goals for improving the detection and it is scheduled for the 
2019 Breaking the Surface conference and workshop where 
preliminary sea trials are going to be done. Expanding the 
negative samples dataset of different seabed compositions 
could also improve the network performance. Other future 
work plans include expanding the learning database to 
multiple classes making the AUV able to detect multiple 
different objects of interest. Another field of interest for future 
research would include estimating the orientation of the diver 
which would prove very useful for the ADRIATIC project 
objectives. 
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