Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1028056

Flaw Detection from Ultrasonic Images using YOLO and SSD


Posilović, Luka; Medak, Duje; Subašić, Marko; Petković, Tomislav; Budimir, Marko; Lončarić, Sven
Flaw Detection from Ultrasonic Images using YOLO and SSD // 2019 11th International Symposium on Image and Signal Processing and Analysis (ISPA) / Lončarić, Sven ; Bregović, Robert ; Carli, Marco ; Subašić, Marko (ur.).
Dubrovnik: Institute of Electrical and Electronics Engineers (IEEE), 2019. str. 163-168 doi:10.1109/ISPA.2019.8868929 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 1028056 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Flaw Detection from Ultrasonic Images using YOLO and SSD

Autori
Posilović, Luka ; Medak, Duje ; Subašić, Marko ; Petković, Tomislav ; Budimir, Marko ; Lončarić, Sven

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
2019 11th International Symposium on Image and Signal Processing and Analysis (ISPA) / Lončarić, Sven ; Bregović, Robert ; Carli, Marco ; Subašić, Marko - Dubrovnik : Institute of Electrical and Electronics Engineers (IEEE), 2019, 163-168

ISBN
978-1-7281-3140-5

Skup
11th International Symposium on Image and Signal Processing and Analysis (ISPA 2019)

Mjesto i datum
Dubrovnik, Hrvatska, 23.09.2019. - 25.09.2019

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
image processing, image analysis, convolutional neural networks, ultrasonic imaging, non-destructive testing, automated flaw detection

Sažetak
Non-destructive ultrasonic testing (UT) of materials is used for monitoring critical parts in power plants, aeronautics, oil and gas industry, and space industry. Due to a vast amount of time needed for a human expert to perform inspection it is practical for a computer to take over that task. Some attempts have been made to produce algorithms for automatic UT scan inspection mainly using older, non-flexible analysis methods. In this paper, two deep learning based methods for flaw detection are presented, YOLO and SSD convolutional neural networks. The methods' performance was tested on a dataset that was acquired by scanning metal blocks containing different types of defects. YOLO achieved average precision (AP) of 89.7% while SSD achieved AP of 84.5%.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo, Interdisciplinarne tehničke znanosti



POVEZANOST RADA


Projekti:
KK.01.2.1.01.0151

Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Poveznice na cjeloviti tekst rada:

doi ieeexplore.ieee.org

Citiraj ovu publikaciju:

Posilović, Luka; Medak, Duje; Subašić, Marko; Petković, Tomislav; Budimir, Marko; Lončarić, Sven
Flaw Detection from Ultrasonic Images using YOLO and SSD // 2019 11th International Symposium on Image and Signal Processing and Analysis (ISPA) / Lončarić, Sven ; Bregović, Robert ; Carli, Marco ; Subašić, Marko (ur.).
Dubrovnik: Institute of Electrical and Electronics Engineers (IEEE), 2019. str. 163-168 doi:10.1109/ISPA.2019.8868929 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Posilović, L., Medak, D., Subašić, M., Petković, T., Budimir, M. & Lončarić, S. (2019) Flaw Detection from Ultrasonic Images using YOLO and SSD. U: Lončarić, S., Bregović, R., Carli, M. & Subašić, M. (ur.)2019 11th International Symposium on Image and Signal Processing and Analysis (ISPA) doi:10.1109/ISPA.2019.8868929.
@article{article, author = {Posilovi\'{c}, Luka and Medak, Duje and Suba\v{s}i\'{c}, Marko and Petkovi\'{c}, Tomislav and Budimir, Marko and Lon\v{c}ari\'{c}, Sven}, year = {2019}, pages = {163-168}, DOI = {10.1109/ISPA.2019.8868929}, keywords = {image processing, image analysis, convolutional neural networks, ultrasonic imaging, non-destructive testing, automated flaw detection}, doi = {10.1109/ISPA.2019.8868929}, isbn = {978-1-7281-3140-5}, title = {Flaw Detection from Ultrasonic Images using YOLO and SSD}, keyword = {image processing, image analysis, convolutional neural networks, ultrasonic imaging, non-destructive testing, automated flaw detection}, publisher = {Institute of Electrical and Electronics Engineers (IEEE)}, publisherplace = {Dubrovnik, Hrvatska} }
@article{article, author = {Posilovi\'{c}, Luka and Medak, Duje and Suba\v{s}i\'{c}, Marko and Petkovi\'{c}, Tomislav and Budimir, Marko and Lon\v{c}ari\'{c}, Sven}, year = {2019}, pages = {163-168}, DOI = {10.1109/ISPA.2019.8868929}, keywords = {image processing, image analysis, convolutional neural networks, ultrasonic imaging, non-destructive testing, automated flaw detection}, doi = {10.1109/ISPA.2019.8868929}, isbn = {978-1-7281-3140-5}, title = {Flaw Detection from Ultrasonic Images using YOLO and SSD}, keyword = {image processing, image analysis, convolutional neural networks, ultrasonic imaging, non-destructive testing, automated flaw detection}, publisher = {Institute of Electrical and Electronics Engineers (IEEE)}, publisherplace = {Dubrovnik, Hrvatska} }

Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font