Pregled bibliografske jedinice broj: 1025746
Application of multivariate regression and artificial neural network modelling for prediction of physical and chemical properties of medicinal plants aqueous extracts
Application of multivariate regression and artificial neural network modelling for prediction of physical and chemical properties of medicinal plants aqueous extracts // Journal of Applied Research on Medicinal and Aromatic Plants, 16 (2020), 100229, 8 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1025746 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Application of multivariate regression and artificial neural network modelling for prediction of physical and chemical properties of medicinal plants aqueous extracts
Autori
Jurinjak Tušek, Ana ; Jurina, Tamara ; Benković, Maja ; Valinger, Davor ; Belščak-Cvitanović, Ana ; Gajdoš Kljusurić, Jasenka
Izvornik
Journal of Applied Research on Medicinal and Aromatic Plants (2214-7861) 16
(2020);
100229, 8
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
multivariate regression ; artificial neural network ; medicinal plants aqueous extracts
Sažetak
In recent years, multivariate modelling techniques have been employed with the aim of analysing, describing, and generally interpreting multidimensional data obtained from experiments. The objective of this study was to evaluate the applicability of multiple linear regression, nonlinear regression, piecewise linear regression, and artificial neural network modelling for the prediction of the physical properties (total dissolved solids, extraction yield), and chemical properties (total phenolic content and antioxidant activity) of the aqueous extracts of nine medicinal plants (dandelion, camomile, lavender, lemon balm, marigold, mint, nettle, plantain, and yarrow), prepared in dynamic experiments based on the extraction conditions (time and temperature), and plant species. Results indicated that simple multivariate regression models could be used for prediction of physical and chemical properties of medicinal plants aqueous extracts (the highest R2 were obtained for total phenolic content), while the artificial neural network proved a very effective tool (R2 > 0.9) for simultaneous prediction of both physical and chemical properties of medicinal plants aqueous extracts.
Izvorni jezik
Engleski
Znanstvena područja
Biotehnologija, Prehrambena tehnologija
POVEZANOST RADA
Ustanove:
Prehrambeno-biotehnološki fakultet, Zagreb
Profili:
Maja Benković
(autor)
Tamara Jurina
(autor)
Davor Valinger
(autor)
Ana Jurinjak Tušek
(autor)
Ana Belščak-Cvitanović
(autor)
Jasenka Gajdoš Kljusurić
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Emerging Sources Citation Index (ESCI)
- Scopus