Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1023193

Congruences for sporadic sequences and modular forms for non-congruence subgroups


Kazalicki, Matija
Congruences for sporadic sequences and modular forms for non-congruence subgroups // Research in the mathematical sciences, 6 (2019), 28; 28, 10 doi:10.1007/s40687-019-0191-3 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1023193 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Congruences for sporadic sequences and modular forms for non-congruence subgroups

Autori
Kazalicki, Matija

Izvornik
Research in the mathematical sciences (2522-0144) 6 (2019), 28; 28, 10

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
apery numbers ; modular forms ; Atkin and Swinnerton-Dyer congruences ; non-congruence subgroups

Sažetak
In 1979, in the course of the proof of the irrationality of ζ(2) Apéry introduced numbers bn that are, surprisingly, integral solutions of the recursive relation (n+1)2un+1−(11n2+11n+3)un−n2un−1=0. Indeed, bn can be expressed as bn=∑nk=0(nk)2(n+kk). Zagier performed a computer search of the first 100 million triples (A, B, C)∈Z3 and found that the recursive relation generalizing bn (n+1)2un+1−(An2+An+B)un+Cn2un−1=0, with the initial conditions u−1=0 and u0=1 has (non-degenerate, i.e., C(A2−4C)≠0) integral solution for only six more triples (whose solutions are so-called sporadic sequences). Stienstra and Beukers showed that for the prime p≥5 b(p−1)/2≡{;4a2−2p(modp) if p=a2+b2, a odd0(modp) if p≡3(mod4). Recently, Osburn and Straub proved similar congruences for all but one of the six Zagier’s sporadic sequences (three cases were already known to be true by the work of Stienstra and Beukers) and conjectured the congruence for the sixth sequence [which is a solution of the recursion determined by triple (17, 6, 72)]. In this paper, we prove that the remaining congruence by studying Atkin and Swinnerton-Dyer congruences between Fourier coefficients of a certain cusp forms for non-congruence subgroup.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb

Profili:

Avatar Url Matija Kazalicki (autor)

Poveznice na cjeloviti tekst rada:

doi link.springer.com arxiv.org doi.org

Citiraj ovu publikaciju:

Kazalicki, Matija
Congruences for sporadic sequences and modular forms for non-congruence subgroups // Research in the mathematical sciences, 6 (2019), 28; 28, 10 doi:10.1007/s40687-019-0191-3 (međunarodna recenzija, članak, znanstveni)
Kazalicki, M. (2019) Congruences for sporadic sequences and modular forms for non-congruence subgroups. Research in the mathematical sciences, 6 (28), 28, 10 doi:10.1007/s40687-019-0191-3.
@article{article, author = {Kazalicki, Matija}, year = {2019}, pages = {10}, DOI = {10.1007/s40687-019-0191-3}, chapter = {28}, keywords = {apery numbers, modular forms, Atkin and Swinnerton-Dyer congruences, non-congruence subgroups}, journal = {Research in the mathematical sciences}, doi = {10.1007/s40687-019-0191-3}, volume = {6}, number = {28}, issn = {2522-0144}, title = {Congruences for sporadic sequences and modular forms for non-congruence subgroups}, keyword = {apery numbers, modular forms, Atkin and Swinnerton-Dyer congruences, non-congruence subgroups}, chapternumber = {28} }
@article{article, author = {Kazalicki, Matija}, year = {2019}, pages = {10}, DOI = {10.1007/s40687-019-0191-3}, chapter = {28}, keywords = {apery numbers, modular forms, Atkin and Swinnerton-Dyer congruences, non-congruence subgroups}, journal = {Research in the mathematical sciences}, doi = {10.1007/s40687-019-0191-3}, volume = {6}, number = {28}, issn = {2522-0144}, title = {Congruences for sporadic sequences and modular forms for non-congruence subgroups}, keyword = {apery numbers, modular forms, Atkin and Swinnerton-Dyer congruences, non-congruence subgroups}, chapternumber = {28} }

Časopis indeksira:


  • Web of Science Core Collection (WoSCC)
    • Emerging Sources Citation Index (ESCI)
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font