Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1016193

Deep Learning in Modeling Energy Cost of Buildings in the Public Sector


Zekić-Sušac, Marijana; Knežević, Marinela; Scitovski, Rudolf
Deep Learning in Modeling Energy Cost of Buildings in the Public Sector // Advances in Intelligent Systems and Computing / Martinez Álvarez, Francisco ; Tronosco Lora, Alicia ; Sáez Muñoz, José António ; Quintián, Héctor ; Corchado, Emilio (ur.).
Cham: Springer, 2020. str. 101-110 doi:10.1007/978-3-030-20055-8


CROSBI ID: 1016193 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Deep Learning in Modeling Energy Cost of Buildings in the Public Sector

Autori
Zekić-Sušac, Marijana ; Knežević, Marinela ; Scitovski, Rudolf

Vrsta, podvrsta i kategorija rada
Poglavlja u knjigama, znanstveni

Knjiga
Advances in Intelligent Systems and Computing

Urednik/ci
Martinez Álvarez, Francisco ; Tronosco Lora, Alicia ; Sáez Muñoz, José António ; Quintián, Héctor ; Corchado, Emilio

Izdavač
Springer

Grad
Cham

Godina
2020

Raspon stranica
101-110

ISBN
978-3-030-20054-1

ISSN
2194-5357

Ključne riječi
energy cost, deep learning, neural networks, public sector

Sažetak
The cost of energy consumed in educational, health, public administration, military, and other types of public buildings constitutes a substantial proportion of the total expenditure of the public sector. Due to a large number of attributes that influence the energy cost of a building, most of the models developed in the literature use only a subset of predictors, often neglect occupational data, and do not exploit enough the potential of deep learning methods. In this paper a real data from Croatian public sector is used including constructional, energetic, geographical, occupational and other attributes. Algorithms for data preprocessing and for deep learning modelling procedure are suggested. The number of hidden units in the deep neural network is optimized by a cross- validation procedure, while the sigmoid activation function was tested with Adam optimization algorithm. The feature selection was conducted using the recursive feature elimination method with a regression random forest kernel. The aims were to identify the subset of relevant predictors of energy cost in public buildings that could assist decision makers in determining the priority of reconstruction measures as well as to test the potential of deep learning in predicting the yearly energy cost. The results have shown that the deep learning network with three hidden layers was the most successful in predicting energy cost using the wrapped-based method of feature extraction. The selection of features confirms the importance of occupational data, as well as heating, cooling, electricity lightning, and constructional attributes for estimating the total energy cost. Those predictors can be used in decision making on allocating resources in public buildings reconstructions. The model implementation could improve public sector energy efficiency, save costs and contribute to the concepts of smart buildings and smart cities.

Izvorni jezik
Engleski

Znanstvena područja
Matematika, Ekonomija, Informacijske i komunikacijske znanosti



POVEZANOST RADA


Projekti:
IP-2016-06-8350 - Metodološki okvir za učinkovito upravljanje energijom s pomoću inteligentne podatkovne analitike (MERIDA) (Zekić-Sušac, Marijana, HRZZ - 2016-06) ( CroRIS)

Ustanove:
Ekonomski fakultet, Osijek,
Fakultet organizacije i informatike, Varaždin,
Sveučilište u Osijeku, Odjel za matematiku

Poveznice na cjeloviti tekst rada:

doi link.springer.com

Citiraj ovu publikaciju:

Zekić-Sušac, Marijana; Knežević, Marinela; Scitovski, Rudolf
Deep Learning in Modeling Energy Cost of Buildings in the Public Sector // Advances in Intelligent Systems and Computing / Martinez Álvarez, Francisco ; Tronosco Lora, Alicia ; Sáez Muñoz, José António ; Quintián, Héctor ; Corchado, Emilio (ur.).
Cham: Springer, 2020. str. 101-110 doi:10.1007/978-3-030-20055-8
Zekić-Sušac, M., Knežević, M. & Scitovski, R. (2020) Deep Learning in Modeling Energy Cost of Buildings in the Public Sector. U: Martinez Álvarez, F., Tronosco Lora, A., Sáez Muñoz, J., Quintián, H. & Corchado, E. (ur.) Advances in Intelligent Systems and Computing. Cham, Springer, str. 101-110 doi:10.1007/978-3-030-20055-8.
@inbook{inbook, author = {Zeki\'{c}-Su\v{s}ac, Marijana and Kne\v{z}evi\'{c}, Marinela and Scitovski, Rudolf}, year = {2020}, pages = {101-110}, DOI = {10.1007/978-3-030-20055-8}, keywords = {energy cost, deep learning, neural networks, public sector}, doi = {10.1007/978-3-030-20055-8}, isbn = {978-3-030-20054-1}, issn = {2194-5357}, title = {Deep Learning in Modeling Energy Cost of Buildings in the Public Sector}, keyword = {energy cost, deep learning, neural networks, public sector}, publisher = {Springer}, publisherplace = {Cham} }
@inbook{inbook, author = {Zeki\'{c}-Su\v{s}ac, Marijana and Kne\v{z}evi\'{c}, Marinela and Scitovski, Rudolf}, year = {2020}, pages = {101-110}, DOI = {10.1007/978-3-030-20055-8}, keywords = {energy cost, deep learning, neural networks, public sector}, doi = {10.1007/978-3-030-20055-8}, isbn = {978-3-030-20054-1}, issn = {2194-5357}, title = {Deep Learning in Modeling Energy Cost of Buildings in the Public Sector}, keyword = {energy cost, deep learning, neural networks, public sector}, publisher = {Springer}, publisherplace = {Cham} }

Časopis indeksira:


  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font