Pregled bibliografske jedinice broj: 1006271
A clustering model for time-series forecasting
A clustering model for time-series forecasting // 42nd International Convention - MIPRO 2019 / Skala, Karolj (ur.).
Rijeka: Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO, 2019. str. 1295-1299 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1006271 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
A clustering model for time-series forecasting
Autori
Čorić, Rebeka ; Đumić, Mateja ; Jelić, Slobodan
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
42nd International Convention - MIPRO 2019
/ Skala, Karolj - Rijeka : Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO, 2019, 1295-1299
Skup
42nd International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO 2019)
Mjesto i datum
Opatija, Hrvatska, 20.05.2019. - 24.05.2019
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Integer programming, clustering, k-means algorithm, heuristic, time-series forecasting, short-term prediction of airborne pollen
Sažetak
In this paper we consider a novel Integer programming approach for the cluster-based model used for time-series forecasting. There are several approaches in literature that aim to find a set of patterns which represent similar situations in the time series. In order to predict target variable, different types of fitting methods can be applied to set of data that belongs to the same pattern. We propose method that uses clustering of patterns and prediction of target value as the mean of values in the same cluster, in order to minimize total squared deviation between predicted and real values of target variable. We also propose a heuristic method that achieves good solution in practice. Our approach is applied to short-term prediction of airborne pollen concentrations. We give experimental results about comparison of our method to some common approaches.
Izvorni jezik
Engleski
Znanstvena područja
Matematika, Računarstvo
POVEZANOST RADA
Ustanove:
Sveučilište u Osijeku, Odjel za matematiku