Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1004017

Cameron-Liebler sets of generators in finite classical polar spaces


De Boeck, Maarten; Rodgers, Morgan; Storme, Leo; Švob, Andrea
Cameron-Liebler sets of generators in finite classical polar spaces // Journal of combinatorial theory. Series A, 167 (2019), 340-388 doi:10.1016/j.jcta.2019.05.005 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1004017 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Cameron-Liebler sets of generators in finite classical polar spaces

Autori
De Boeck, Maarten ; Rodgers, Morgan ; Storme, Leo ; Švob, Andrea

Izvornik
Journal of combinatorial theory. Series A (0097-3165) 167 (2019); 340-388

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Cameron-Liebler set ; Finite classical polar space ; Distance-regular graph ; Tight set ; 3-transitivity

Sažetak
Cameron-Liebler sets were originally defined as collections of lines (“line classes”) in PG(3, q) sharing certain properties with line classes of symmetric tactical decompositions. While there are many equivalent characterisations, these objects are defined as sets of lines whose characteristic vector lies in the image of the transpose of the point-line incidence matrix of PG(3, q), and so combinatorially they behave like a union of pairwise disjoint point- pencils. Recently, the concept of a Cameron- Liebler set has been generalised to several other settings. In this article we introduce Cameron-Liebler sets of generators in finite classical polar spaces. For each of the polar spaces we give a list of characterisations that mirrors those for Cameron-Liebler line sets, and also prove some classification results.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
HRZZ-IP-2018-01-6732 - Kombinatorički objekti i kodovi (COCo) (Crnković, Dean, HRZZ ) ( CroRIS)

Ustanove:
Sveučilište u Rijeci, Fakultet za matematiku

Profili:

Avatar Url Andrea Švob (autor)

Poveznice na cjeloviti tekst rada:

doi www.sciencedirect.com

Citiraj ovu publikaciju:

De Boeck, Maarten; Rodgers, Morgan; Storme, Leo; Švob, Andrea
Cameron-Liebler sets of generators in finite classical polar spaces // Journal of combinatorial theory. Series A, 167 (2019), 340-388 doi:10.1016/j.jcta.2019.05.005 (međunarodna recenzija, članak, znanstveni)
De Boeck, M., Rodgers, M., Storme, L. & Švob, A. (2019) Cameron-Liebler sets of generators in finite classical polar spaces. Journal of combinatorial theory. Series A, 167, 340-388 doi:10.1016/j.jcta.2019.05.005.
@article{article, author = {De Boeck, Maarten and Rodgers, Morgan and Storme, Leo and \v{S}vob, Andrea}, year = {2019}, pages = {340-388}, DOI = {10.1016/j.jcta.2019.05.005}, keywords = {Cameron-Liebler set, Finite classical polar space, Distance-regular graph, Tight set, 3-transitivity}, journal = {Journal of combinatorial theory. Series A}, doi = {10.1016/j.jcta.2019.05.005}, volume = {167}, issn = {0097-3165}, title = {Cameron-Liebler sets of generators in finite classical polar spaces}, keyword = {Cameron-Liebler set, Finite classical polar space, Distance-regular graph, Tight set, 3-transitivity} }
@article{article, author = {De Boeck, Maarten and Rodgers, Morgan and Storme, Leo and \v{S}vob, Andrea}, year = {2019}, pages = {340-388}, DOI = {10.1016/j.jcta.2019.05.005}, keywords = {Cameron-Liebler set, Finite classical polar space, Distance-regular graph, Tight set, 3-transitivity}, journal = {Journal of combinatorial theory. Series A}, doi = {10.1016/j.jcta.2019.05.005}, volume = {167}, issn = {0097-3165}, title = {Cameron-Liebler sets of generators in finite classical polar spaces}, keyword = {Cameron-Liebler set, Finite classical polar space, Distance-regular graph, Tight set, 3-transitivity} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font