Nalazite se na CroRIS probnoj okolini. Ovdje evidentirani podaci neće biti pohranjeni u Informacijskom sustavu znanosti RH. Ako je ovo greška, CroRIS produkcijskoj okolini moguće je pristupi putem poveznice www.croris.hr
izvor podataka: crosbi !

An Investigation on the Aggregation and Rheodynamics of Human Red Blood Cells Using High Performance Computations (CROSBI ID 261325)

Prilog u časopisu | izvorni znanstveni rad | međunarodna recenzija

Xu, D ; Ji, C ; Avital, E ; Kaliviotis, E ; Munjiza, Ante ; Williams, J An Investigation on the Aggregation and Rheodynamics of Human Red Blood Cells Using High Performance Computations // Scientifica (Hindawi), 1 (2017), 1; 6524156, 10

Podaci o odgovornosti

Xu, D ; Ji, C ; Avital, E ; Kaliviotis, E ; Munjiza, Ante ; Williams, J

engleski

An Investigation on the Aggregation and Rheodynamics of Human Red Blood Cells Using High Performance Computations

Studies on the haemodynamics of human circulation are clinically and scientifically important. In order to investigate the effect of deformation and aggregation of red blood cells (RBCs) in blood flow, a computational technique has been developed by coupling the interaction between the fluid and the deformable RBCs. Parallelization was carried out for the coupled code and a high speedup was achieved based on a spatial decomposition. In order to verify the code’s capability of simulating RBC deformation and transport, simulations were carried out for a spherical capsule in a microchannel and multiple RBC transport in a Poiseuille flow. RBC transport in a confined tube was also carried out to simulate the peristaltic effects of microvessels. Relatively large-scale simulations were carried out of the motion of 49, 512 RBCs in shear flows, which yielded a hematocrit of 45%. The large-scale feature of the simulation has enabled a macroscale verification and investigation of the overall characteristics of RBC aggregations to be carried out. The results are in excellent agreement with experimental studies and, more specifically, both the experimental and simulation results show uniform RBC distributions under high shear rates (60–100/s) whereas large aggregations were observed under a lower shear rate of 10/s.

RBC aggregations

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

nije evidentirano

Podaci o izdanju

1 (1)

2017.

6524156

10

objavljeno

2090-908X

Povezanost rada

Interdisciplinarne tehničke znanosti, Interdisciplinarne biotehničke znanosti