Napredna pretraga

Pregled bibliografske jedinice broj: 976306

On symmetric (78, 22, 6) designs and related self-orthogonal codes


Crnković, Dean; Dumičić Danilović, Doris; Rukavina, Sanja
On symmetric (78, 22, 6) designs and related self-orthogonal codes // Utilitas mathematica, 109 (2018), 227-253 (međunarodna recenzija, članak, znanstveni)


Naslov
On symmetric (78, 22, 6) designs and related self-orthogonal codes

Autori
Crnković, Dean ; Dumičić Danilović, Doris ; Rukavina, Sanja

Izvornik
Utilitas mathematica (0315-3681) 109 (2018); 227-253

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Symmetric design ; automorphism group ; solvable group ; self-orthogonal code

Sažetak
We describe a method for constructing 2-designs admitting a solvable automorphism group, and construct new symmetric (78, 22, 6) designs. Until now, only five symmetric (78, 22, 6) designs were known. In this paper we show that, up to isomorphism, there are at least 413 symmetric (78, 22, 6) designs, 412 of them having Z(6) as an automorphism group. Further, we show that up to isomorphism there is exactly one symmetric (78, 22, 6) design admitting an automorphism group isomorphic to Frob(39) x Z(2), namely the design constructed by Zvonimir Janko and Tran van Trung. Thus, there is no (78, 22, 6) difference set in the group Frob(39) x Z(2). We study binary linear codes spanned by the incidence matrices of the constructed designs. Further, extending previous results on codes obtained from orbit matrices of 2-designs, we show that under certain conditions both fixed and nonfixed part of an orbit matrix span a self-orthogonal code over the finite field F-p(n) or over the ring Z(m). We construct self-orthogonal codes over Z(4) spanned by orbit matrices of symmetric (78, 22, 6) designs.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekt / tema
HRZZ-IP-2013-11-1637 - Kodovi i s njima povezane kombinatoričke strukture (Dean Crnković, )

Ustanove
Sveučilište u Rijeci - Odjel za matematiku

Časopis indeksira:


  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus