Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 970723

Recursive Partitioning in Predicting Energy Consumption of Public Buildings


Zekić-Sušac, Marijana; Has, Adela; Mitrović, Saša
Recursive Partitioning in Predicting Energy Consumption of Public Buildings // Proceedings of the 29th Central European Conference on Information and Intelligent Systems / Strahonja, Vjeran ; Kirinić, Valentina (ur.).
Varaždin: Faculty of Organization and Informatics, University of Zagreb, 2018. str. 179-186 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 970723 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Recursive Partitioning in Predicting Energy Consumption of Public Buildings

Autori
Zekić-Sušac, Marijana ; Has, Adela ; Mitrović, Saša

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proceedings of the 29th Central European Conference on Information and Intelligent Systems / Strahonja, Vjeran ; Kirinić, Valentina - Varaždin : Faculty of Organization and Informatics, University of Zagreb, 2018, 179-186

Skup
Central European Conference on Information and Intelligent Systems

Mjesto i datum
Varaždin, Hrvatska, 19.-21.09.2018

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Recursive partitioning, energy consumption, public buildings

Sažetak
Recursive partitioning includes a number of algorithms that create a classification or a regression decision tree by splitting the values of independent variables. The aim of this paper is to compare the accuracy of four different recursive partitioning methods in predicting the electrical energy consumption of public buildings. The input space included 141 attributes of public buildings in Croatia describing their geospatial, construction, heating, cooling, meteorological and energy characteristics. Four methods that produce regression tree partitioning were trained and tested. The results show that the random forest (RF) has outperformed CART, conditional inference tree (CTREE), and gradient boosted tree (GBT). The selection of important predictors was also compared and discussed.

Izvorni jezik
Engleski

Znanstvena područja
Ekonomija, Informacijske i komunikacijske znanosti



POVEZANOST RADA


Projekti:
HRZZ-IP-2016-06-8350 - Metodološki okvir za učinkovito upravljanje energijom s pomoću inteligentne podatkovne analitike (MERIDA) (Zekić-Sušac, Marijana, HRZZ - 2016-06) ( POIROT)

Ustanove:
Ekonomski fakultet, Osijek

Citiraj ovu publikaciju:

Zekić-Sušac, Marijana; Has, Adela; Mitrović, Saša
Recursive Partitioning in Predicting Energy Consumption of Public Buildings // Proceedings of the 29th Central European Conference on Information and Intelligent Systems / Strahonja, Vjeran ; Kirinić, Valentina (ur.).
Varaždin: Faculty of Organization and Informatics, University of Zagreb, 2018. str. 179-186 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Zekić-Sušac, M., Has, A. & Mitrović, S. (2018) Recursive Partitioning in Predicting Energy Consumption of Public Buildings. U: Strahonja, V. & Kirinić, V. (ur.)Proceedings of the 29th Central European Conference on Information and Intelligent Systems.
@article{article, author = {Zeki\'{c}-Su\v{s}ac, Marijana and Has, Adela and Mitrovi\'{c}, Sa\v{s}a}, year = {2018}, pages = {179-186}, keywords = {Recursive partitioning, energy consumption, public buildings}, title = {Recursive Partitioning in Predicting Energy Consumption of Public Buildings}, keyword = {Recursive partitioning, energy consumption, public buildings}, publisher = {Faculty of Organization and Informatics, University of Zagreb}, publisherplace = {Vara\v{z}din, Hrvatska} }
@article{article, author = {Zeki\'{c}-Su\v{s}ac, Marijana and Has, Adela and Mitrovi\'{c}, Sa\v{s}a}, year = {2018}, pages = {179-186}, keywords = {Recursive partitioning, energy consumption, public buildings}, title = {Recursive Partitioning in Predicting Energy Consumption of Public Buildings}, keyword = {Recursive partitioning, energy consumption, public buildings}, publisher = {Faculty of Organization and Informatics, University of Zagreb}, publisherplace = {Vara\v{z}din, Hrvatska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font