Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 960635

Automated classification of Croatian traditional music


Strizrep, Ivan; Sovic Krzic, Ana; Sersic, Damir
Automated classification of Croatian traditional music // Proceedings of 41st International Convention on Information and Communication Technology, Electronics and Microelectronics, 2018. / Skala, Karolj (ur.).
Rijeka: Croatian Society for Information and Communication Technology, Electronics and Microelectronics - MIPRO, 2018. str. 1028-1033 doi:10.23919/MIPRO.2018.8400188 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 960635 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Automated classification of Croatian traditional music

Autori
Strizrep, Ivan ; Sovic Krzic, Ana ; Sersic, Damir

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proceedings of 41st International Convention on Information and Communication Technology, Electronics and Microelectronics, 2018. / Skala, Karolj - Rijeka : Croatian Society for Information and Communication Technology, Electronics and Microelectronics - MIPRO, 2018, 1028-1033

ISBN
978-953-233-097-7

Skup
2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO)

Mjesto i datum
Opatija, Hrvatska, 21.-25.05.2018

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
classification, mel-frequency cepstral coefficients, machine learning, traditional music

Sažetak
Croatian traditional music is rich with different music styles. Four of them are on the UNESCO Representative list of the intangible cultural heritage of humanity: two-part singing and playing in the Istrian scale, Becarac singing and playing from Slavonia, Klapa multipart singing of Dalmatia and Ojkanje singing. Every region of Croatia is represented by different instruments, singing styles, rhythm and dynamics. This paper describes an automated classification of Croatian traditional music into regions. The regions are defined by historical and geographical factors and music style similarities: Slavonia, central Croatia, Međimurje, Istria&Kvarner and Dalmatia. Each region is presented with 20 typical music songs. A sample of each song lasts for 30 seconds. The primary used features are mel- frequency cepstral coefficients, as well as zero crossing rate and sound volume. Extracted features are used in machine learning. As a result, more than 80% of the songs are correctly classified. The result shows how specific Croatian traditional music is and how important is to preserve it for future generations.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Projekti:
HRZZ-IP-2014-09-2625 - Iznad Nyquistove granice (BeyondLimit) (Seršić, Damir, HRZZ - 2014-09) ( POIROT)

Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Ana Sović (autor)

Avatar Url Damir Seršić (autor)

Poveznice na cjeloviti tekst rada:

doi

Citiraj ovu publikaciju:

Strizrep, Ivan; Sovic Krzic, Ana; Sersic, Damir
Automated classification of Croatian traditional music // Proceedings of 41st International Convention on Information and Communication Technology, Electronics and Microelectronics, 2018. / Skala, Karolj (ur.).
Rijeka: Croatian Society for Information and Communication Technology, Electronics and Microelectronics - MIPRO, 2018. str. 1028-1033 doi:10.23919/MIPRO.2018.8400188 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Strizrep, I., Sovic Krzic, A. & Sersic, D. (2018) Automated classification of Croatian traditional music. U: Skala, K. (ur.)Proceedings of 41st International Convention on Information and Communication Technology, Electronics and Microelectronics, 2018. doi:10.23919/MIPRO.2018.8400188.
@article{article, editor = {Skala, K.}, year = {2018}, pages = {1028-1033}, DOI = {10.23919/MIPRO.2018.8400188}, keywords = {classification, mel-frequency cepstral coefficients, machine learning, traditional music}, doi = {10.23919/MIPRO.2018.8400188}, isbn = {978-953-233-097-7}, title = {Automated classification of Croatian traditional music}, keyword = {classification, mel-frequency cepstral coefficients, machine learning, traditional music}, publisher = {Croatian Society for Information and Communication Technology, Electronics and Microelectronics - MIPRO}, publisherplace = {Opatija, Hrvatska} }
@article{article, editor = {Skala, K.}, year = {2018}, pages = {1028-1033}, DOI = {10.23919/MIPRO.2018.8400188}, keywords = {classification, mel-frequency cepstral coefficients, machine learning, traditional music}, doi = {10.23919/MIPRO.2018.8400188}, isbn = {978-953-233-097-7}, title = {Automated classification of Croatian traditional music}, keyword = {classification, mel-frequency cepstral coefficients, machine learning, traditional music}, publisher = {Croatian Society for Information and Communication Technology, Electronics and Microelectronics - MIPRO}, publisherplace = {Opatija, Hrvatska} }

Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font